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This appendix presents additional derivations and estimation results that are

removed from the paper for space limitations.

In section A we present the effects of misspecified levels on posterior results

in a standard New Keynesian Phillips Curve (NKPC). This analysis provides a

straightforward motivation for the extended NKPC and HNKPC models in the pa-

per. Specifically, we show that a priori demeaning and detrending of the data, with-

out considering the short and long-run data properties obscure inference in these

standard models.

In section B we elaborate and compare the inference of the NKPC model using

structural form and unrestricted reduced form. This section illustrates the difficulty

of inferring the unrestricted reduced form parameters and to obtain the main pa-

rameters of interest, the structural parameters, using these. This difficulty is based

on the non-linear parameter transformations required to link the structural and the

reduced form models. Through simulation examples, we show that flat prior distri-

butions used in one of the model representations can be very informative in the other

model representation. This section motivates the structural parameter estimation

approach we follow throughout the paper.

Sections C and D provide the details of the posterior sampling algorithms for the

extended NKPC and HNKPC models proposed in the main paper. In these sections,

the state space representations of the extended models and the appropriate sampling

scheme are explained in detail. We further report the exact prior parameters used

for the results in the paper and present a sketch of a prior sensitivity analysis based

on prior-predictive likelihood comparisons.

Sections E, F and G provide posterior and predictive results for the extended

NKPC and HNKPC models which are not included in the paper due to space con-

straints. In section E we present additional posterior and predictive results for the

extended NKPC models. Main conclusions from these models are similar to the
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extended HNKPC model results discussed in the paper. Nonetheless, we provide

these results for clarity and the ease of comparison. In section F we present addi-

tional results for the HNKPC models which are in line with the main conclusions of

the paper. Section G presents the entire distribution of the inflation predictions for

extended NKPC and HNKPC models we propose.

Section H presents the results of the prior-predictive likelihood analysis for the

proposed models. The main conclusion of this section is that the adopted priors

in the paper do not dominate the results. The data information is the main factor

favoring the extended models we propose.

Section I presents the posterior and predictive results of the alternative NKPC

and HNKPC models, considered for robustness checks, in detail. Several alternative

models are compared with the extended models in the paper. We show that our

main conclusions on the improved model performance through modeling the trends

and levels in the data, and the use of survey data hold. We further disentangle the

predictive gains from these two sources of extensions.

In section J presents a further alternative HNKPCmodel to the proposed HNKPC

models in our paper. This model aims at accounting for the possibility of measure-

ment errors in survey expectations. The results obtained from this alternative model

are very similar to the corresponding results of in the paper, thus, we conclude that

the effect of the measurement errors in survey expectations is negligible.

Section K presents a straightforward cointegration analysis for inflation and

marginal cost series, based on the time-varying NKPC model structure. This anal-

ysis is performed to justify an implicit assumption in the proposed models namely

the assumption that there is no stable long-run relationship between the inflation

and marginal cost series. The results of this cointegration analysis are in line with

the implicit assumption we make in the proposed NKPC model structures.

5



A Effect of misspecified level shifts on posterior

estimates of inflation persistence

The linear NKPC captures the relation between real marginal cost z̃t and inflation

π̃t. We illustrate in this section that model misspecification resulting from ignoring

level shifts in inflation data leads to overestimation of persistence in the inflation

equation within a linear NKPC.

The linear NKPC model can be written as

π̃t = λz̃t + γbπ̃t−1 + ϵ1,t,

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t,
(1)

with (ϵ1,t, ϵ2,t)
′ ∼ NID(0,Σ). This model is a triangular simultaneous equations

model and can also be interpreted as an instrumental variable model with two in-

struments. We specify an AR(2) model for the marginal costs in order to mimic for

the cyclical behavior of the observed series, see Basistha and Nelson (2007); Kleiber-

gen and Mavroeidis (2011) for a similar specification. The AR(2) parameters are

restricted to the stationary region |ϕ1| + ϕ2 < 1, |ϕ2| < 1, and the lagged adjust-

ment parameter in the inflation equation is restricted as 0 ≤ γb < 1. The structural

parameter λ, the slope of the Phillips curve, is restricted as 0 ≤ λ < 1 which is in

line with previous evidence on the slope of the NKPC.

Since NKPC in (1) specifies the relation between the short-run stationary fluc-

tuations in real marginal costs and inflation, π̃t and z̃t can be interpreted as the

transitory components of inflation and marginal costs, in deviation from their long-

run components. In fact, the observed non-filtered data can be decomposed into
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permanent and transitory components in a straightforward way as

πt = π̃t + cπ,t,

zt = z̃t + cz,t,
(2)

where πt and zt are the inflation and marginal cost data, respectively, and cπ,t and

cz,t are the permanent components of the series.

In our simulation experiment, we model the steady state inflation as a constant

level subject to regime shifts in order to mimic the high inflationary period during

the 1970s. For modelling the permanent component of the real marginal cost series,

we use a trend specification mimicking the declining real marginal cost levels in the

U.S. over the sample starting from the 1960s. This specification can be formulated

as follows

cπ,t = cπ,t−1 + κtηt−1, cz,t = cz,t−1 + µz,t−1,

µz,t = µz,t−1, ηt ∼ NID(0, ω2),
(3)

where κt is a binary variable indicating a level shift in the level series, cπ,t and cz,t

indicate the level value of inflation and real marginal costs, respectively, in period t

and µz,t is the slope of the trend in the real marginal cost series. By excluding the

stochastic component for the slope and the trend of the real marginal costs in (3),

we specify a deterministic trend for this series.

We simulate three sets of data from the model in (1)–(3). For the first set, the

inflation series show no level shifts, i.e. κt = 0, ∀t. For the other two sets of data, we

impose different level shifts with moderate (ω2 = 2.5) and large (ω2 = 5) changes in

the level values, respectively. For each specification we simulate 100 datasets with

T = 200 observations, where two level shifts occur in periods t = 50 and t = 150.

The observation error variance is set to ( 1 0.01
0.01 0.01 ), which leads to a correlation of

0.1 between the disturbances, and parameter λ is set to 0.1. Note that parameters

ϕ1 = 0.1 and ϕ2 = 0.5 are chosen such that the transitory component of the series
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is stationary.

In order to capture the effect of model misspecification on posterior inference,

when computing the transitory component, we ignore level shifts in the simulated

inflation series and simply demean the series. For the marginal cost series, we remove

the linear trend prior to the analysis and only focus on the effect of misspecification

in the inflation series. This implies that for the simulated data with no level shifts,

the model is correctly specified and the posterior results should be close to the true

values. For each simulated data set we estimate the model in (1) using flat priors

on restricted parameter regions:

p(ϕ1, ϕ2, γb, λ) ∝

1, if |ϕ1|+ ϕ2 < 1, |ϕ2| < 1, 0 ≤ γb < 1, 0 ≤ λ < 1

0, otherwise
. (4)

Given that model (1) is equivalent to an instrumental variables model with 2

instruments, it can be shown that the likelihood function for such a model combined

with the flat prior on a large space yields a posterior distribution that exists but it has

no first or higher moments. Due to the bounded region condition on the parameters,

where the structural parameter λ is restricted to the unit interval, all moments exist.

For details, we refer to Zellner, Ando, Baştürk, Hoogerheide and Van Dijk (2013).

We mention this existence result since it provides an econometric explanation why

it is often difficult to estimate a structural model for macro-economic data such as

(1). Indeed, the rather flat posterior surface plagues the inference, in particular,

when ϕ2 is close to zero. Posterior moments are in our case computed by means

of standard Metropolis-Hastings method on ϕ1 and ϕ2 and λ and γb. Other Monte

Carlo methods like Gibbs sampling are also feasible in this case.

Figure 1 presents the overestimation results from 100 different simulations for

each setting we consider. We report the average overestimation in posterior γb

estimates and 95% highest posterior density intervals (HPDI) for this overestimation.
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Figure 1: Overestimation illustration for the backward looking NKPC model
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Note: The figure presents overestimation probability of parameter
γb for simulated data from the NKPC model with different struc-
tural breaks structures. We report average quantiles of overestima-
tion based on 100 simulation replications for each parameter setting.

The persistence parameter γb is overestimated in all cases except for the cor-

rectly specified model. The degree of overestimation becomes larger with a larger

shift in the level of inflation. Note that the average 95% HPDI of overestimation

becomes tighter for data with extreme changes in levels. Hence the effect of model

misspecification on the persistence estimates is more pronounced if the regime shifts

are extreme.

In summary, our simulation experiments using NKPC show that when the shifts

in the inflation level are not modelled, inference on model persistence parameters

may be severely biased due to the model misspecification. This will also hold for

predictive estimates.

We note that we focused on misspecification effects on persistence measures when

level shifts in the series are ignored. Similar experiments can be set up for the NKPC

with weak identification (or weak instruments) by setting ϕ2 ≈ 0. The effect of

misspecification on posterior and predictive estimates in the case of weak identifica-

tion is a topic outside the scope of the present paper. We refer to Kleibergen and
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Mavroeidis (2011) for details on Bayesian estimation in case of weak identification.

B Structural and reduced form inference of the

NKPC model

This section presents the unrestricted reduced form inference (URF) of the NKPC

model, and the inference of the corresponding structural form (SF) model param-

eters. The structural form (SF) representation for the basic NKPC model derived

from the firm’s price setting for filtered data is given as

π̃t = λz̃t + γfEt(π̃t+1) + ϵ1,t,

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t,
(5)

where (ϵ1,t, ϵ2,t)
′ ∼ NID (0,Σ) and standard stationary restrictions hold for ϕ1, ϕ2.

We show that the posterior draws from the structural form parameters can be

obtained using the reduced form representation of (5):

π̃t = α1z̃t−1 + α2z̃t−2 + ϵ1,t,

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t,
(6)

where (ϵ1,t, ϵ2,t)
′ ∼ NID (0,Σ), and the restricted reduced form (RRF) representa-

tion is obtained by introducing the following restrictions on parameters in (5):

α1 = λ(ϕ1+γϕ2)
1−γ(ϕ1+γϕ2)

, α2 =
λϕ2

1−γ(ϕ1+γϕ2)
. (7)

Finally, the model in (5) is related to an Instrumental Variables (IV) model with

exact identification. Bayesian estimation of the unrestricted reduced form model in

(6) is straightforward under flat or conjugate priors. Given the posterior draws of

reduced form parameters, posterior draws of structural form parameters in (5) can be
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obtained using the transformation in (7). This nonlinear transformation, however,

causes difficulties in setting the priors in an adequate way. The determinant of the

Jacobian of this nonlinear transformation is | J |= λϕ2
2

(1−γ(ϕ1+γϕ2))
2 , where the Jacobian

is non-zero and finite if γ(ϕ1 + γϕ2) ̸= 1, ϕ2 ̸= 0 and λ ̸= 0.1

Figure 2 illustrates the nonlinear transformation for the SF and RRF repre-

sentations, for a grid of parameter values from SF representations, and plot the

corresponding RRF parameter values, and vice versa. The top panel in Figure 2

shows the transformations from SF to RRF. Reduced form parameters α1 and α2

tend to infinity when persistence in inflation and marginal cost series are high, i.e.

when the structural form parameters λ and ϕ1 + ϕ2 tend to 1. The bottom panel in

Figure 2 shows the RRF to SF transformations. The corresponding SF parameters

lead to an irregular shape, for example, when the instrument zt−2 has no explanatory

power with ϕ2 = 0 or when α2 = 0.

C Bayesian inference of the extended NKPCmodel

In this section we summarize the prior specifications, our use of prior predictive like-

lihoods, and the posterior sampling algorithms for the extended NKPC and HNKPC

models. We further present a prior sensitivity analysis for the proposed models using

a prior-predictive analysis.

C.1 Prior specification for parameters

The extended NKPC and HNKPC models contain several additional parameters

compared to the standard NKPC model. We classify the model parameters in five

groups, and assign independent priors for each group. The first group includes the

common parameters in the NKPC and HNKPC models, θN = {λ, γf , ϕ1, ϕ2,Σ}, in
1We only consider the transformation from {λ, γ, ϕ1, ϕ2} to {α1, α2, ϕ1, ϕ2}, i.e. variance pa-

rameters in the transformed model are left as free parameters.
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Figure 2: Nonlinear parameter transformations
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(5). For the structural parameters {λ, γf , ϕ1, ϕ2} we define flat priors on restricted

regions, which also ensure that the autoregressive parameters, ϕ1 and ϕ2, are in the

stationary region and the (observation) variance priors are of inverse-Wishart type2

p(λ, γf , ϕ1, ϕ2|Σ) ∝ constant for |λ| < 1, |γf | < 1, |ϕ1|+ ϕ2 < 1, |ϕ2| < 1,

Σ ∼ IW (1, 20× Σ̃),
(8)

where IW (ν,Ψ) is the inverse Wishart density with scale Ψ and degrees of freedom

ν. It is possible to use economic theory or steady state relationships to construct

priors for these parameters, see Del Negro and Schorfheide (2008). We do not follow

this approach but let the data information dominate our relatively weak prior infor-

mation. For the same reason, we perform a prior-predictive analysis and investigate

the sensitivity of our posterior results with respect to the prior.

Note that the prior specifications of the observation and state covariances are

important in this class of models and for macroeconomic data. Since the sample

size is typically small, differentiating the short-run variation in series (the obser-

vation variances) from the variation in the long-run (the state variation) can be

cumbersome, see Canova (2012). We therefore impose a data based prior on the

observation covariances. We first estimate an unrestricted reduced form VAR model

using demeaned inflation series and (linear) detrended (log) real marginal cost se-

ries, and base the observation variance prior on this covariance estimate, Σ̃. This

specification imposes smoothness for the estimated levels and trends, and ensures

that the state errors do not capture all variation in the observed variables. Second,

prior distributions for the extra model parameters stemming from the hybrid models,

θH = {γH
b , β} are defined as uniform priors on restricted regions |γH

b | < 1, |β| < 1.

Third, we define independent inverse-Gamma priors for the state variances

ση1 ∼ IG(20, 20× 10−2), ση2 ∼ IG(20, 20× 10−3), ση3 ∼ IG(1, 1× 10−5), (9)

2We experimented with wider truncated uniform densities for the λ and γf parameters. The
prior truncation does not seem to have a substantial affect on the posterior results.
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where IG(α, αξ) is the inverse-Gamma distribution with shape α and scale αξ.

Parameters α and ξ are the a priori number and variance of dummy observations.

Similar to the standard counterparts, the extended NKPC and HNKPC models

may also suffer from flat likelihood functions. We therefore set weakly informative

priors for the state parameters, such that not all variation in inflation and marginal

cost series are captured by the time-varying trends and levels. For example, the

number of prior dummy observations for ση1 and ση2 is much less than the number

of observations to limit the prior information.

The fourth prior distribution we consider is applicable to the NKPC and HNKPC

models with level shifts. For these models, we consider a fixed level shift probability

of 0.04. This choice leads to an a priori expected number of shifts of 8 for 200

observations in the sample. Alternatively, this parameter can be estimated together

with other model parameters. However, often the limited number of level shifts

plague the inference of this parameter. Hence, we set this value, obtained trough an

extensive search over intuitive values of this parameter, prior to analysis.

Finally, for the stochastic volatility models, we specify an inverse-gamma prior

for the marginal cost variances. For the correlation coefficient, ρ, we take an unin-

formative prior p(ρ) ∝ (1− ρ2)−3/2, see Çakmaklı et al. (2011).

C.2 Posterior existence and the sampling algorithm

We summarize the Bayesian inference for the proposed models. An important point

regarding the posterior of the structural parameters is the existence of a posterior

distribution and its moments, which depends on the number of instruments and

the prior. Given one relatively weak instrument (the second lag of the marginal

cost series) the posterior will have very fat tails and the existence of the posterior

distribution is ensured through priors defined on a bounded region, see Zellner et al.

(2013) for a detailed analysis of a linear IV model with small numbers of weak
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instruments.

The MCMC sampler for the full conditional posterior distribution is based on

Gibbs sampling with a Metropolis-Hastings step and data augmentation, combining

the methodologies in Geman and Geman (1984); Tanner and Wong (1987); Gerlach

et al. (2000) and Çakmaklı et al. (2011).

Together with the level specifications of the inflation and real marginal cost series

the proposed extended NKPC model takes the following form

πt − cπ,t = λ
1−(ϕ1+ϕ2γf )γf

(zt − cz,t) +
ϕ2γfλ

1−(ϕ1+ϕ2γf )γf
(zt−1 − cz,t−1) + ϵ1,t,

zt − cz,t = ϕ1 (zt−1 − cz,t−1) + ϕ2 (zt−2 − cz,t−2) + ϵ2,t,

cπ,t+1 = cπ,t + κtη1,t+1,

cz,t+1 = µz,t + cz,t + η2,t+1,

µz,t+1 = µz,t + η3,t+1,

(10)

where (ϵ1,t, ϵ2,t)
′ ∼ NID

(
0,
(

σ2
ϵ1

ρσϵ1σϵ2

ρσϵ1σϵ2 σ2
ϵ2

))
, (η1,t, η2,t, η3,t)

′ ∼ NID

(
0,

(
σ2
η1

0 0

0 σ2
η2

0

0 0 σ2
η3

))
and the disturbances (ϵ1,t, ϵ2,t)

′ and (η1,t, η2,t, η3,t)
′ are independent for all t.

The NKPC model in (10) can be cast into the state-space form as follows

Yt = HXt +BUt + ϵt, ϵt ∼ N(0, Qt)

Xt = FXt−1 +Rtηt, ηt ∼ N(0, I)
(11)

where

Yt =

πt

zt

 , Xt =

(
cπ,t, cz,t, µz,t, cz,t−1, cz,t−2

)′

, Ut =


zt

zt−1

zt−2

 , ϵt =

ϵ1,t

ϵ2,t

 ,

H =

1 −α1 0 −α2 0

0 1 0 −ϕ1 −ϕ2

 , B =

α1 α2 0

0 ϕ1 ϕ2

 , Qt =

 σ2
ϵ1,t

ρσϵ1,tσϵ2

ρσϵ1,tσϵ2 σ2
ϵ2

 ,

15



F =



1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0


, Rt =



κtση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0


, ηt =


η1,t

η2,t

η3,t

 ,

where α1 =
λ

1−(ϕ1+ϕ2γf )γf
and α2 =

λγϕ2

1−(ϕ1+ϕ2γ)γ
.

Once the state-space form of the model is set as in (11) standard inference

techniques in state-space models can be carried out. Let Y1:T = (Y1, Y2, . . . , YT )
′,

X1:T = (X1, X2, . . . , XT )
′, U1:T = (U1, U2, . . . , UT )

′, σ2
ϵ1,1:T

= (σ2
ϵ1,1

, σ2
ϵ1,2

, . . . , σ2
ϵ1,T

)′

and θ = (ϕ1, ϕ2, γf , λ)
′. For the most general NKPC model with level shifts and

stochastic volatility, the simulation scheme is as follows

1. Initialize the parameters by drawing κt using the prior for level shift proba-

bility, pκ, and by drawing unobserved states Xt, ht for t = 1, 2, . . . , T from

standard normal distribution and conditional on κt for t = 0, 1, . . . , T . Initial-

ize m = 1.

2. Sample θ(m) from p(θ|Y1:T , X1:T , U1:T , R1:T , Q1:T ).

3. Sample X
(m)
t from p(Xt|θ(m), Y1:T , U1:T , R1:T , Q1:T ) for t = 1, 2, . . . , T .

4. Sample h
(m)
t from p(ht|X(m)

1:T , θ(m), Y1:T , U1:T , R1:T , ρ, σ
2
ϵ2
, σ2

η4
) for t = 1, 2, . . . , T .

5. Sample κ
(m)
t from p(κ

(m)
t |θ(m), Y1:T , h

(m)
1:T , U1:T , R1:T , ρ, σ

2
ϵ2
) for t = 1, 2, . . . , T .

6. Sample σ
2,(m)
ηi from p(σ

2,(m)
ηi |X(m)

1:T , h
(m)
1:T , κ

(m)
1:T ) for i = 1, 2, 3, 4.

7. Sample ρ(m) from from p(ρ(m)|X(m)
1:T , h

(m)
1:T , Y1:T , U1:T , θ

(m), σ
2,(m−1)
ϵ2 ).

8. Sample σ
2,(m)
ϵ2 from from p(σ

2,(m)
ϵ2 |ρ(m), X

(m)
1:T , h

(m)
1:T , Y1:T , U1:T , θ

(m)).

9. Set m = m+ 1, repeat (2)-(9) until m = M .
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Steps (3)-(5) are common to many models in the Bayesian state-space framework,

see for example Kim and Nelson (1999); Gerlach et al. (2000); Çakmaklı (2012).

Sampling of θ

Conditional on the states cπ,t, cz,t and ht for t = 1, 2, . . . , T , redefining the vari-

ables such that π̃t = πt − cπ,t, z̃t = zt − cz,t and εt = ϵt/ exp(ht/2), the measurement

equation in (11) can be rewritten as

π̃t = λ
1−(ϕ1+ϕ2γf )γf

z̃t +
ϕ2γfλ

1−(ϕ1+ϕ2γf )γf
z̃t−1 + εt

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ϵ2,t.
(12)

Posterior distributions of the structural parameters under flat priors are non-

standard since zt term also is on the right hand side of (12) and the model is highly

non-linear in parameters. We therefore use two Metropolis Hastings steps to sample

these structural parameters, see Metropolis et al. (1953) and Hastings (1970). For

sampling ϕ1, ϕ2 conditional on λ, γf and other model parameters, the candidate

density is a multivariate student-t density on the stationary region with a mode

and scale with the posterior mode and scale using only the second equation in (12)

and 1 degrees of freedom. For sampling λ, γf conditional on ϕ1, ϕ2 and other model

parameters, the candidate is a uniform density.

Sampling of states, Xt

Conditional on the remaining model parameters, drawing X0:T can be imple-

mented using standard Bayesian inference. This constitutes running the Kalman

filter first and running a simulation smoother using the filtered values for drawing

smoothed states as in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). We
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start the recursion for t = 1, . . . , T

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +R′

tRt

ηt|t−1 = yt −HXt|t−1 −BUt

ζt|t−1 = HPt|t−1H
′ +Qt

Kt = Pt|t−1H
′ζ ′t|t−1

Xt|t = Xt|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtH
′ζ ′t|t−1,

(13)

and store Xt|t and Pt|t. The last filtered state XT |T and its covariance matrix PT |T

correspond to the smoothed estimates of the mean and the covariance matrix of

the states for period T . Having stored all the filtered values, simulation smoother

involves the following backward recursions for t = T − 1, . . . , 1

η∗t+1|t = Xt+1 − FXt|t

ζ∗t+1|t = FPt|tF
′ +R′

t+1Rt+1

Xt|t,Xt+1 = Xt|t + Pt|tF
′ζ∗−1
t+1|tη

∗
t+1|t

Pt|t,Pt+1 = Pt|t − Pt|tF
′ζ∗−1
t+1|tFPt|t.

(14)

Intuitively, the simulation smoother updates the states using the same principle as in

the Kalman filter, where at each step filtered values are updated using the smoothed

values obtained from backward recursion. For updating the initial states, using the

state equation X0|t,X1 = F−1X1 and P0|t,P1 = F−1(P1+R′
1R1)F

′−1 can be written for

the first observation. Given the mean Xt|t,Xt+1 and the covariance matrix Pt|t,Pt+1 ,

the states can be sampled from Xt ∼ N(Xt|t,Xt+1 , Pt|t,Pt+1) for t = 0, ..., T .

Sampling of inflation volatilities, ht

Conditional on the remaining model parameters, we can draw h0:T using standard

Bayesian inference as in the case of Xt. One important difference, however, stems

18



from the logarithmic transformation of the variance in the stochastic volatility model.

As the transformation concerns the error structure, the square of which follows a χ2

distribution, the system is not Gaussian but follows a log-χ2 distribution. Noticing

the properties of log-χ2 distribution, Kim et al. (1998) and Omori et al. (2007)

approximate this distribution using a mixture of Gaussian distributions. Hence,

conditional on these mixture components the system remains Gaussian allowing for

standard inference outlined above. For details, see Omori et al. (2007). For the

estimation of the volatilities in the BVAR-TV-SV model we use the extension of

the algorithm following Kastner and Frühwirth-Schnatter (2013) for improving the

efficiency of the MCMC algorithm.

Sampling of structural break parameters, κt

Sampling of structural break parameters, κt relies on the conditional posterior of

the binary outcomes, i.e. the posterior value in case of a structural break in period t

and the posterior value of the case of no structural breaks. However, evaluating this

posterior requires one sweep of filtering, which is of order O(T ). As this evaluation

should be implemented for each period t the resulting procedure would be of order

O(T 2). When the number of sample size is large this would result in an infeasible

scheme. Gerlach et al. (2000) propose an efficient algorithm for sampling structural

break parameters, κt, conditional on the observed data, which is still of order O(T ).

We implement this algorithm for estimation of the structural breaks and refer to

Gerlach et al. (2000); Giordani and Kohn (2008) for details.

Sampling of state error variances, σ2
η

Using standard results from a linear regression model with a conjugate prior for

the variances in (11), it follows that the conditional posterior distribution of σ2
ηi
, with

i = 1, 2, 3, 4 is an inverted Gamma distribution with scale parameter Φηi +
∑T

t=1 η
2
i,t

and with T + νηi degrees of freedom for i = 2, 3, 4 where Φηi and νηi are the scale

and degrees of freedom parameters of the prior density. For i = 1 the parameters of

19



the inverted Gamma distribution becomes Φη1 +
∑T

t=1 κtη
2
1,t and

∑T
t=1 κt + νη1 .

Sampling of marginal costs variance and correlation coefficient

To sample the variance of marginal costs and correlation coefficient, we decom-

pose the multivariate normal distribution of ϵt into the conditional distribution of

ϵ2,t given ϵ1,t and the marginal distribution of ϵ1,t, as in Çakmaklı et al. (2011). This

results in

T∏
t=1

f(ϵt) =
T∏
t=1

1

σϵ1,t

ϕ

(
ϵ1,t
σϵ1,t

)
1

σϵ2,t

√
(1− ρ2)

ϕ

(
ϵ2,t − ρϵ1,t
σϵ2,t(1− ρ2)

)
, (15)

Hence, together with prior for the variance in (11), variance of the marginal cost

series can be sampled using (15) by setting up a Metropolis-Hasting step using

an inverted Gamma candidate density with scale parameter
∑T

t=1 ϵ
2
2,t and with T

degrees of freedom. To sample ρ from its conditional posterior distribution we can

again use (15). Conditional on the remaining parameters the posterior becomes

(1− ρ2)−
3
2

T∏
t=1

(
1√

(1− ρ2)
ϕ

(
ϵ2,t − ρϵ1,t
σϵ2,t(1− ρ2)

))
. (16)

We can easily implement the griddy Gibbs sampler approach of Ritter and Tanner

(1992). Given that ρ ∈ (−1, 1) we can setup a grid in this interval based on the

precision we desire about the value of ρ.

C.3 Prior-predictive likelihood analysis

In the proposed models, it is important to assess the effects of the specified prior

distributions on the predictive likelihoods. Due to the nonlinear structure of the

models, assessing the amount of prior information on the predictive results is not

trivial. We present a prior-predictive analysis as in Geweke (2010). For each of the

extended NKPC and HNKPC model, we consider 1000 parameter draws from the

joint prior distribution and compute the prior predictive likelihoods for the period
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between 1973-II and 2012-I. Hence a comparison of the resulting prior predictions

will indicate which model is preferred by the priors.

D Bayesian inference of the extended HNKPC

model

Posterior inference of the HNKPC models with time varying parameters follow sim-

ilar to section C, using the Gibbs sampler with data augmentation. Together with

the level specifications of the inflation and real marginal cost series the proposed

extended HNKPC model takes the following form

πt − cπ,t = λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt − cz,t) +

ϕ2γH
f λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt−1 − cz,t−1) ,

+
γH
b γH

f

(1−γH
b γH

f )

γH
f

1−γH
f β

(µt − cπ,t) +
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) +

1
(1−γH

b γH
f )
ϵ1,t,

zt − cz,t = ϕ1 (zt−1 − cz,t−1) + ϕ2 (zt−2 − cz,t−2) + ϵ2,t,

cπ,t+1 = cπ,t + κtη1,t+1,

cz,t+1 = µz,t + cz,t + η2,t+1,

µz,t+1 = µz,t + η3,t+1.

(17)

This can be cast into the state-space form as in (11)

Yt = HXt +BUt + ϵt, ϵt ∼ N(0, Qt)

Xt = FXt−1 +Rtηt, ηt ∼ N(0, I)
(18)
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using the following definitions

Yt =

πt

zt

 , Xt =

(
cπ,t cz,t µz,t, cz,t−1 cz,t−2 cπ,t−1

)′

, ϵt =

ϵ1,t

ϵ2,t

 ,

Ut =

(
zt zt−1 zt−2 πt−1 µt

)′

, B =

α1 α2 0 α4 α3

0 ϕ1 ϕ2 0 0

 ,

H =

1− α3 −α1 0 −α2 0 −α4

0 1 0 −ϕ1 −ϕ2 0

 , Qt =

 σ2
ϵ1,t

ρσϵ1,tσϵ2

ρσϵ1,tσϵ2 σ2
ϵ2

 ,

Ft =



1 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0


, Rt =



κtση1 0 0

0 ση2 0

0 0 ση3

0 0 0

0 0 0

0 0 0


, ηt =


η1,t

η2,t

η3,t

 ,

where parameters α1, α2, α3, α4 are defined as functions of the structural form pa-

rameters

α1 =
λH(

1− (ϕ1 + ϕ2γH
f )γH

f

) (
1− γH

b γH
f

) , α2 =
λHγH

f ϕ2(
1− (ϕ1 + ϕ2γH

f )γH
f

) (
1− γH

b γH
f

) ,
α3 =

γH
b γH

f(
1− γH

b γH
f

) γH
f(

1− γH
f β
) , α4 =

γH
b(

1− γH
b γH

f

) .
Given this setup, posterior inference can be carried out using the steps outlined

in section C.
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E Posterior results for the NKPC models with

non-filtered time series

This section presents additional estimation results for the NKPC models with non-

filtered time series. We summarize the estimated levels, volatilities, breaks and

inflation expectations obtained from the NKPC-TV, NKPC-TV-LS and NKPC-TV-

LS-SV models. Figure 3 shows the estimated levels from the three NKPC models.

Estimated inflation levels, computed as the posterior mean of the smoothed states,

are given in the first row of Figure 3. Shaded areas around the posterior means

represent the 95% HPDI for the estimated levels. For all three models, estimated

inflation levels nicely track the observed inflation. Effects of the level specification

are reflected in the estimates in various ways. First, when we model inflation level

changes as discrete level shifts rather than continuous changes, we observe a rel-

atively smoother pattern in estimated inflation levels. This effect can be seen by

comparing the second and first graphs in the first row of Figure 3. While estimated

inflation level in the first graph follows the observed inflation patterns closely, esti-

mated inflation level in the second (and third to a less extent) graph mostly indicates

three distinct periods. These periods are the high inflation periods capturing 1970s

with a constant inflation level around 1.7% (quarterly inflation) following a low in-

flation period in 1960s, and the period after the beginning of 1980s with a stable

inflation level around 0.5%, see Cecchetti et al. (2007) for similar findings. Second,

adding the stochastic volatility together with level shifts results in discrete level

shifts in inflation which are more frequent than the model with only level shifts.

The second panel in Figure 3 presents the estimated levels for the real marginal

cost series for all models. A common feature of all these estimates is the smooth-

ness of the estimated levels. In all models, marginal cost series follows a slightly

nonlinear trend during the sample period. The estimated slopes of these trends for
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Figure 3: Level, trend and slope estimates from the NKPC models
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Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show
estimated real marginal cost levels and slopes, respectively. Grey shaded areas correspond to the
95% HPDI. NKPC-TV refers to the NKPC model with time varying levels and trends. NKPC-
TV-LS refers to the NKPC model with time varying levels and trends. NKPC-TV-LS-SV refers to
the NKPC model with time varying levels, trends and volatility. HNKPC-TV refers to the Hybrid
NKPC model with time varying levels, trends and inflation expectations. HNKPC-TV-LS refers to
the HNKPC model with time varying levels, trends and inflation expectations. HNKPC-TV-LS-SV
refers to the HNKPC model with time varying levels, trends, inflation expectations and volatility.
Results are based on 40000 simulations of which the first 20000 are discarded for burn-in.

all models are given in the bottom panel of Figure 3, together with the 95% HPDIs.

Nonlinearity of the negative trend is reflected in the negative values for the slope

of the trend, with an increasing magnitude at the end of the sample. This change

in the slope of the trend is accompanied by the increasing uncertainty about the

slope. The difference between the models in terms of the estimated marginal cost

structures is negligible.
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F Posterior results for the HNKPC models with

non-filtered time series

This section presents additional estimation results for the HNKPC models with

non-filtered time series. We summarize the estimated levels, volatilities, breaks and

inflation expectations obtained from the HNKPC-TV, HNKPC-TV-LS and HNKPC-

TV-LS-SV models.

Figure 4 presents the estimated inflation levels, together with estimated levels

and trends of the marginal cost series.

Figure 4: Level, trend and slope estimates from the HNKPC models
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Note: The top panel exhibits estimated inflation levels. The middle and the bottom panels show
estimated real marginal cost levels and slopes, respectively. Grey shaded areas correspond to the
95% HPDI. Results are based on 40000 simulations of which the first 20000 are discarded for
burn-in.

Figure 5 presents the estimated inflation expectations together with observed

survey based inflation expectations.

25



Figure 5: Implied inflation expectations by HNKPC models
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Note: The thick solid lines are the posterior means of inflation expectations from the HNKPC
models. The thin solid lines are the observations of inflation expectations from survey data. Grey
shaded areas are the 95% HPDI for estimated inflation expectations. Results are based on 40000
simulations of which the first 20000 are discarded for burn-in.

G Predicted inflation densities from all proposed

models

This section presents the entire distribution of the inflation predictions for all NKPC

and HNKPC models. Predicted inflation densities from all proposed models are pre-

sented in Figure 6. In these figures, the solid lines represent the posterior mean of

predicted inflation, and the white areas under the inflation densities show the infla-

tion levels with non-zero posterior probability. For all models we propose, inflation

predictions are concentrated around high (low) values during the high (low) infla-

tionary periods. The uncertainty around the inflation predictions are also high for

these periods, together with the periods when inflation is subject to a transition to
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low values around 1980s.

When the observed inflation values are close to the zero bound, the predictive

densities indicate disinflationary risk, computed as the fraction of the predictive

distribution below zero.

H Prior-predictive likelihoods of proposed mod-

els

Due to the complex model structures in the proposed models, it is important to ad-

dress the effects of the specified prior distributions on the predictive performances.

We therefore perform the prior-predictive analysis outlined in section C for the

extended NKPC models, for the forecast sample analyzed earlier, covering the pe-

riod between 1973-II and 2012-I. Table 1 presents the average and cumulative prior

predictive likelihoods for the forecast sample. Prior predictive likelihoods, not us-

ing the data information and also using weak prior information, naturally perform

worse than the predictive results reported in Table 3. Table 1 also shows that the

adopted prior distributions clearly favor the less parameterized model, NKPC-TV.

Moreover, the priors clearly do not favor models with stochastic volatility compo-

nents. Most importantly, the ‘best performing model’ according to the predictive

results in Table 3, HNKPC-TV-LS-SV, is the least favorable one according to the

adopted prior distributions using the same forecast sample. We therefore conclude

that data information is dominant, and the superior predictive performance of the

HNKPC-TV-LS-SV model is not driven by the prior distribution.
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Figure 6: Predicted inflation densities from NKPC and HNKPC models

PC-TV HPC-TV

PC-TV-LS HPC-TV-LS

PC-TV-LS-SV HPC-TV-LS-SV

Note: The figure presents one period ahead predictive distributions of inflation from the NKPC
and HNKPC models, for the period between the third quarter of 1973 and the first quarter of 2012.
Model abbreviations are as in Figure 3 . Results are based on 40000 simulations of which the first
20000 are discarded for burn-in.
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Table 1: Prior-predictive results for the NKPC models

Model Average Cumulative
(Log) Pred. Likelihood (Log) Pred. Likelihood

NKPC-TV -1.16 -180.88
NKPC-TV-LS -1.36 -210.91
NKPC-TV-LS-SV -1.45 -224.66
HNKPC-TV -1.28 -199.22
HNKPC-TV-LS -1.27 -197.68
HNKPC-TV-LS-SV -2.04 -318.77

Note: The table reports the prior-predictive performances of all competing models for the prediction
sample over the period 1973-II until 2012-I. ‘Average (Cumulative) Log Pred. Likelihood’ stands
for the average (sum) of the natural logarithms of predictive likelihoods. Results are based on 1000
simulations from the joint priors of model parameters. Model abbreviations are as in Table 1 in
the paper.

I Posterior and predictive results from alternative

models for robustness checks

The proposed NKPC and HNKPC models extend the standard models in several

ways. First, both model structures introduce time variation in the long and short

run dynamics of inflation and marginal cost series. Second, the introduction and

the iterative solution of the expectational mechanisms and the survey data in the

extended HNKPC models enables the use of more data information. Furthermore,

extended and standard HNKPC models use the additional information from a back-

ward looking component for the inflation series compared to the HNKPC counter-

parts. According to the predictive results, the most comprehensive model, HNKPC-

TV-LS-SV is also the best performing model. However, a deeper analysis is needed

in order to see the added predictive gains from each of these extensions. In this

section we consider several alternative models and their predictive performances to

separately address the predictive gains from each of these extensions in the model

structure. Table 2 presents all NKPC and HNKPC model structures we compare to

differentiate these effects.
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Table 2: Standard and extended NKPC models

aaaaaaaaaaaaaa

low/high
frequencies

model
structure iterated expectations solution direct expectations data

NKPC HNKPC NKPC HNKPC

linear trend NKPC-LT n/a ⋆ NKPCS-LT HNKPCS-LT

Hodrick-Prescott filter NKPC-HP n/a ⋆ NKPCS-HP HNKPCS-HP

time varying levels NKPC-TV HNKPC-TV NKPCS-TV HNKPCS-TV

time varying levels and switching NKPC-TV-LS HNKPC-TV-LS NKPCS-TV-LS HNKPCS-TV-LS

time varying levels and stochastic

volatility

NKPC-TV-SV HNKPC-TV-SV NKPCS-TV-SV HNKPCS-TV-SV

time varying levels, switching and

stochastic volatility

NKPC-TV-LS-

SV

HNKPC-TV-LS-

SV

NKPCS-TV-LS-

SV

HNKPCS-TV-LS-

SV

Note: The first two columns present the standard and extended (H)NKPC models presented in the main paper, for

which expectational mechanisms are solved explicitly. The last two columns present alternative model structures

for (H)NKPC models. For these models, we do not iterate inflation expectations in the models, but instead replace

them with survey data directly. NKPC(S)-LT (NKPC-HP(S)) refers to the NKPC model where the real marginal

cost series is detrended using linear trend (Hodrick-Prescott) filter. For the remaining models real marginal cost

series’ trend is modeled using local linear trend model. NKPC(S)-TV refers to the NKPC model with time varying

inflation levels. NKPC(S)-TV-LS refers to the NKPC model with time varying inflation levels together with level

shifts. NKPC(S)-TV-SV refers to the NKPC model with time varying inflation levels and stochastic volatility.

NKPC(S)-TV-LS-SV refers to the NKPC model with time varying inflation levels together with level shifts and

stochastic volatility. HNKPC(S)-TV refers to the Hybrid NKPC model with time varying levels and inflation

expectations. HNKPC(S)-TV-LS refers to the HNKPC model with time varying levels together with level shifts

and inflation expectations. HNKPC(S)-TV-SV refers to the HNKPC model with time varying levels, inflation

expectations and stochastic volatility. HNKPC(S)-TV-LS-SV refers to the HNKPC model with time varying levels

together with level shifts, inflation expectations and stochastic volatility.

⋆ Iterative solution of these models without using the survey data does not exist.

The first set of alternative models we consider are the standard NKPC and

HNKPC models combined with data from survey expectations, without introducing

explicit time variation in the low frequency structure of data but instead demeaning

the inflation series, and detrending the marginal cost series prior to analysis. These

models are given in the first two rows of the right panel of Table 2 and are abbre-

viated by NKPCS-LT, NKPCS-HP, HNKPCS-LT and HNKPCS-HP, according to

linear detrending or HP detrending prior to analysis. The improved predictive per-

formances of NKPCS-LT and NKPCS-HP models compared to the standard NKPC

counterparts show predictive gains from incorporating survey expectations in the

models. Furthermore, comparing the predictive performances of the HNKPCS-LT
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and HNKPCS-HP models with the time-varying hybrid models, such as the HNKPC-

TV or HNKPC-TV-LS models show the gains from incorporating time variation

alone, since all these models use survey data and the backward looking component

for inflation.

The second set of alternative models we consider, on the right panel of Table 2,

are NKPC models with time-varying levels, where we incorporate the survey expec-

tations in the model directly rather than solving the model iteratively. These models

correspond to (5) where the expectation term is replaced by survey expectations.

We denote these models by NKPCS-TV, NKPCS-TV-LS and NKPCS-TV-LS-SV,

for the time-varying levels, time-varying levels with regimes shifts in inflation and

time-varying levels with regime shifts and stochastic volatility component in infla-

tion, respectively. Comparing the predictive results of these models to the HNKPC

counterparts provide the predictive gains solely from the HNKPC extension, i.e. they

separate the gains from incorporating the backward looking inflation component in

the model from the other model extensions.

The third set of alternative models we consider are the HNKPC models using the

survey expectations directly, without solving for the expectational mechanisms. We

denote these models by HNKPCS-TV, HNKPCS-TV-LS and HNKPCS-TV-LS-SV,

for the time-varying levels, time-varying levels with regimes shifts in inflation and

time-varying levels with regime shifts and stochastic volatility component, respec-

tively. Comparing the predictive performance of these models with the proposed

HNKPC models clarifies the predictive gains from solving for the inflation expecta-

tions iteratively in the hybrid models.

The final set of alternative models aim to pinpoint predictive gains from intro-

ducing level shifts in inflation in the models with a stochastic volatility component.

The comparison of the predictive results of models with time-varying levels and

stochastic volatility, (H)NKPC-TV-SV, and with level shifts and stochastic volatil-
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ity, (H)NKPC-TV-LS-SV, highlights predictive gains solely from introducing level

shifts when changes in inflation volatility are taken into account.

One period ahead MSFE and log marginal likelihoods of these models, together

with the standard (H)NKPC models and the models proposed in the paper, are given

in Table 3. The prediction results are based on the forecast sample, which covers the

period between the second quarter of 1973 and the first quarter of 2012. Comparing

the first block and the first two rows of the second block Table 3, we see that the gains

from using survey data inflation are substantial even in the standard NKPC models.

In terms of predictive gains, the biggest improvement in predictive likelihoods and

the MSFE are achieved with this contribution in the models. However, the predictive

performances of these improved models are still far from the more involved models.

Hence the gains from the proposed models do not only stem from the inclusion of

the survey data information alone.

We also report the predictive gains resulting specifically from introducing time-

variation in the inflation and marginal cost series, by comparing the results of the

HNKPCS-LT and HNKPCS-HP models with the HNKPC-TV or HNKPC-TV-LS

models in the table. The more involved models with time variation clearly perform

better according to the predictive results. Especially the difference in marginal

likelihoods of these models enables us to conclude that incorporating time variation

in the data is also important.

As a third possible reason for predictive gains, we focus on the models with back-

ward looking components. One way to separate the added value from this component

is to consider the second block of Table 3. The prediction results from the NKPC and

HNKPC models in this block are very similar, with slight improvements in the hy-

brid models, where the backward looking component is incorporated. Another way

to see the effect of the backward looking component is to compare the NKPCS-TV,

NKPCS-TV-LS and NKPCS-TV-LS-SV models with HNKPCS-TV, HNKPCS-TV-

32



LS and HNKPCS-TV-LS-SV models, respectively. In all these comparisons, the

models without the backward looking component performs slightly better (worse)

in terms of MSFE (marginal likelihood), hence the backward looking component

does not seem to improve predictive results in general and the improvements in the

hybrid models mainly stem from incorporating the survey expectations.

From the considered alternative models, time-varying level models with a stochas-

tic volatility component using survey data directly (NKPCS-TV-LS-SV and HNKPCS-

TV-LS-SV) clearly perform best. In terms of the predictive likelihoods, these models

are also comparable to the ‘best performing’ model we propose.

A final source of possible predictive gains in the proposed models is the iterative

solution of inflation expectations. This comparison is based on the comparison

of the models in the third (fourth) block and the fifth (sixth) block of Table 3,

where only the third (fourth) block uses the iterative solution. According to the

MSFE, predictive results deteriorate slightly when we solve the system. We find this

result rather counterintuitive since the iterative solution is based on the complete

model structure. As we show briefly, despite this slight increase in the predictive

performances, models without the iterative solutions suffer from identification issues.

We next focus on changes in parameter estimates for the alternative models

proposed in this section. Table 4 presents the parameter estimates for all alterna-

tive models. Despite the predictive gains from these alternative models, parame-

ter estimates are rather different from those obtained from the proposed models.

Specifically for the hybrid models considered, uncertainty in posterior distributions

increase substantially if the iterative model solution is not used. Furthermore, pos-

terior densities of some parameters are quite irregular in most of these models which

use expectations data directly. Figure 7 shows this irregularity for the HNKPCS-TV

model, parameters λ(H), γ
(H)
b and γ

(H)
f . The bimodality problem in posterior densi-

ties is most apperant in the NKPC slope, λ
(H)
b . Furthermore, the backward looking
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component γ
(H)
b is spread over a wide region with multiple modes. Similar results

hold for the remaining alternative models which make use of the survey expectations

data directly. We therefore conclude that replacing the expectational term in the

(H)NKPC models with survey expectations deteriorate posterior inference compared

to the iterative solution of these expectational terms.

Figure 7: Posterior density of λ(H), γ
(H)
b and γ

(H)
f from the HNKPCS-TV model
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Note: The figure presents posterior densities of parameters from the HNKPCS-TV model. Model
abbreviations are based on Table 2. Results are based on 40000 simulations of which the first 20000
are discarded for burn-in.

34



Table 3: Predictive performance of additional NKPC models

Model (Log) Marg. MSFE
Likelihood 1 period ahead

NKPC-LT -139.327 0.353

NKPC-HP -157.195 0.458

NKPCS-LT -79.141 0.105

NKPCS-HP -85.397 0.130

HNKPCS-LT -81.047 0.105

HNKPCS-HP -85.200 0.119

NKPC-TV -46.162 0.142

NKPC-TV-LS -61.972 0.138

NKPC-TV-SV -22.761 0.134
NKPC-TV-LS-SV -33.476 0.126

HNKPC-TV -36.385 0.123

HNKPC-TV-LS -35.052 0.105

HNKPC-TV-SV -19.695 0.106
HNKPC-TV-LS-SV -18.150 0.091

NKPCS-TV -34.407 0.129

NKPCS-TV-LS -32.004 0.099

NKPCS-TV-LS-SV -15.390 0.092

HNKPCS-TV -40.465 0.176

HNKPCS-TV-LS -38.082 0.297

HNKPCS-TV-LS-SV -12.977 0.139

BVAR (constant) -166.226 0.085

BVAR-TV-SV -97.980 0.100

SW2007 -78.033 0.168

Note: The table reports the predictive performances of alternative models for the period between
the second quarter of 1973 and the first quarter of 2012. ‘(Log) Marg. Likelihood’ stands for
the natural logarithm of the marginal likelihoods. ‘MSFE’ stands for the Mean Squared Forecast
Error. Marginal likelihood values in the first column are calculated as the sum of the predictive
likelihood values in the prediction sample. Results are based on 10000 simulations of which the
first 5000 are discarded for burn-in. Model abbreviations are based on Table 2. BVAR (constant)
denotes the BVAR model with 2 lags and with constant parameters. ‘BVAR-TV-SV’ denotes the
‘BVAR’ model with 2 lags, time varying levels for both series and stochastic volatility for inflation.
‘SW2007 stands for the model proposed by Stock and Watson (2007).

35



T
ab

le
4:

P
os
te
ri
or

re
su
lt
s
of

al
te
rn
at
iv
e
N
K
P
C

m
o
d
el
s

M
o
d
el

λ
(H

)
γ
(H

)
f

γ
H b

ρ
ϕ
1

ϕ
2

N
K
P
C
S
-L
T

0
.0
1
1
(0
.0
51

)
0.
61

1
(0
.0
55

)
−

-0
.0
16

(0
.0
21

)
0
.8
2
4
(0
.0
47

)
0
.0
7
5
(0
.0
44

)
N
K
P
C
S
-H

P
0.
0
64

(0
.0
5
1)

0.
62

7
(0
.0
81

)
−

-0
.0
45

(0
.0
6
4)

0.
6
81

(0
.0
9
6)

0.
0
14

(0
.0
8
1)

H
N
K
P
C
S
-L
T

0.
1
54

(0
.2
0
5)

0.
35

0
(0
.2
36

)
0.
40

8
(0
.2
02

)
-0
.1
14

(0
.1
55

)
0
.8
2
3
(0
.0
58

)
0
.0
6
9
(0
.0
57

)
H
N
K
P
C
S
-H

P
0.
2
34

(0
.2
3
5)

0.
33

3
(0
.1
80

)
0.
47

2
(0
.1
54

)
-0
.2
16

(0
.1
97

)
0
.6
1
4
(0
.0
79

)
-0
.0
1
8
(0
.0
57

)

N
K
P
C
S
-T

V
0.
0
57

(0
.0
2
8)

0.
14

2
(0
.0
86

)
−

-0
.0
34

(0
.0
6
1)

0.
8
15

(0
.0
5
2)

0.
0
67

(0
.0
5
2)

N
K
P
C
S
-T

V
-L
S

0.
0
49

(0
.0
2
3)

0.
43

0
(0
.1
25

)
−

-0
.0
27

(0
.0
5
0)

0.
8
21

(0
.0
5
4)

0.
0
72

(0
.0
5
2)

N
K
P
C
S
-T

V
-L
S
-S
V

0.
0
58

(0
.0
2
5)

0.
30

7
(0
.1
65

)
−

-0
.0
15

(0
.0
6
8)

0.
8
26

(0
.0
5
2)

0.
0
78

(0
.0
5
3)

H
N
K
P
C
S
-T

V
0.
3
83

(0
.3
9
5)

0.
30

8
(0
.1
97

)
0.
40

1
(0
.1
11

)
-0
.3
22

(0
.3
49

)
0
.5
9
3
(0
.3
14

)
0
.0
0
7
(0
.1
00

)
H
N
K
P
C
S
-T

V
-L
S

0.
5
57

(0
.4
3
2)

0.
37

5
(0
.1
96

)
0.
39

3
(0
.0
94

)
-0
.4
68

(0
.3
67

)
0
.4
3
2
(0
.3
28

)
-0
.0
3
1
(0
.1
0
1)

H
N
K
P
C
S
-T

V
-L
S
-S
V

0.
1
51

(0
.1
7
8)

0.
21

6
(0
.1
61

)
0.
36

8
(0
.1
49

)
-0
.0
24

(0
.0
95

)
0
.8
7
1
(0
.0
27

)
0
.1
1
2
(0
.0
32

)

N
o
te
:

P
o
st
er
io
r
re
su
lt
s
a
re

b
a
se
d

on
40

00
0
si
m
u
la
ti
on

s
of

w
h
ic
h

th
e
fi
rs
t
20

00
0
a
re

d
is
ca
rd
ed

fo
r
b
u
rn
-i
n
.

M
o
d
el

ab
b
re
v
ia
ti
on

s
ar
e
b
as
ed

o
n
T
ab

le
2
.

36



To conclude, predictive gains obtained from including the survey expectations

in the models are substantial and incorporating the low and high frequency data

movements in the model is crucial. These two conclusions are in line with Faust

and Wright (2013), who consider a large set of alternative models for inflation fore-

casting, including unrestricted reduced form models, and compare their forecast

performances based on MSFE. Our model incorporates both these features in the

NKPC model structure. Third, once survey data and time variation are included

in the model, there are still additional predictive gains from the backward looking

component in the hybrid models.

J Modeling inflation expectations using unobserved

components

The HNKPC models implicitly assume that survey based inflation expectations cap-

ture ‘real’ inflation expectations for the next period accurately. However, survey ex-

pectations are likely to reflect real inflation expectations with a measurement error.

In this section we extend the HNKPC model by including a latent variable for unob-

served inflation expectations, aiming to account for the possibility of measurement

errors in survey expectations. Specifically, we propose an adaptive rule under which

inflation expectations partially adjust to survey expectations at each period:

St+1 = µt+1 + βS(St − µt) + ηS,t+1, (19)

where |βS| < 1 and µt is the survey observation for inflation expectation at time

t. This adaptive rule implies that unobserved inflation expectations converge to

the survey based expectations in the long run. Given the restriction on parameter

βS, one can solve (19) for St and obtain St = µt +
∑∞

j=0 β
j
SηS,t−j. This specification

allows for the interpretation that expected inflation is equal to the survey values with
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a measurement error that is specified as an infinite moving average with declining

weights.

We next consider the HNKPC model given the specified adaptive rule for the

unobserved inflation expectations. Notice that we can factorize the expectation

term in equation (9) in the main text of the paper, Et (π̃t+k), into two parts related

to the measurement error and the relation between survey based expectations and

long run expectations, as Et (π̃t+k) = Et (St+k−1 − µt+k−1) + Et (µt+k−1 − cπ,t+k).

Then the weighted sum of expectations in equation (9) in the paper becomes

∞∑
k=1

γk
fEt (π̃t+k) =

∞∑
k=1

γk
fEt (St+k−1 − µt+k−1) +

∞∑
k=1

γk
fEt (µt+k−1 − cπ,t+k) . (20)

The first part of the summation,
∑∞

k=1 γ
k
fEt (St+k−1 − µt+k−1), is related to the

measurement error and can be computed from (19). For the second part of the sum-

mation,
∑∞

k=1 γ
k
fEt (µt+k−1 − cπ,t+k), we specify a similar partial adjustment process

as the process specified in the paper µt−cπ,t+1 = βµ(µt−1−cπ,t)+ηµ,t+1. The partial

adjustment mechanism implies that the further one gets into the future the smaller

will be the difference between short and long run inflation expectations. Estimates

of βµ will indicate the empirical speed of adjustment. For instance, for a value of

the posterior mean of βµ equal to 0.5 it follows that within a few periods one has

almost complete adjustment.

Replacing the infinite sum of expectations of inflation deviations using the two

specifications for the measurement error and for the deviation of the survey expec-
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tations from the long run inflation expectations in (20), the HNKPC model becomes

πt − cπ,t = λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt − cz,t) +

ϕ2γH
f λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt−1 − cz,t−1)

+
γH
b γH

f

(1−γH
b γH

f )

(
γH
f

1−γH
f βS

(St − µt) +
γH
f

1−γH
f βµ

(µt − cπ,t)
)

+
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) +

1
(1−γH

b γH
f )
ϵ1,t,

zt − cz,t = ϕ1 (zt−1 − cz,t−1) + ϕ2 (zt−2 − cz,t−2) + ϵ2,t.

(21)

Notice that if the speed of adjustment for both specifications are equal, i.e.

βS = βµ, then the HNKPC reduces to

πt − cπ,t = λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt − cz,t) +

ϕ2γH
f λH

(1−γH
b γH

f )(1−(ϕ1+ϕ2γH
f )γH

f )
(zt−1 − cz,t−1)

+
γH
b γH

f

(1−γH
b γH

f )

γH
f

1−γH
f βS

(St − cπ,t) +
γH
b

(1−γH
b γH

f )
(πt−1 − cπ,t−1) +

1
(1−γH

b γH
f )
ϵ1,t,

zt − cz,t = ϕ1 (zt−1 − cz,t−1) + ϕ2 (zt−2 − cz,t−2) + ϵ2,t.

(22)

We next compare the models specified in (21) and in (22) with a HNKPC-TV

parametrization in terms of their forecast performances. For the forecast sample

considered in the paper, the cumulative predictive likelihood for the HNKPC-TV

model in (21) is −36.19 while for the model in (22) this value is −36.44. The cumu-

lative predictive likelihood values for the HNKPC-TV model with and without the

restriction βS = βµ indicate that this restriction is statistically valid as the difference

between the likelihood values are very small. Following this evidence we display the

parameter estimates of all extended HNKPC models using the expectation speci-

fication in (22) in Table 5. We further report the cumulative predictive likelihood

values and 1 step ahead MSFE for these models in Table 6.

Results are very similar to the corresponding table in the paper (Table 2), thus,

we conclude that the effect of the measurement errors in survey expectations is

negligible.
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Table 5: Posterior results of HNKPC models with unobserved inflation expectations

Model λH γH
f γH

b βS ρ ϕ1 ϕ2

HNKPC-TV 0.05 (0.03) 0.02 (0.03) 0.38 (0.14) 0.49 (0.28) 0.01 (0.06) 0.81 (0.05) 0.07 (0.05)

HNKPC-TV-LS 0.04 (0.02) 0.01 (0.01) 0.49 (0.11) 0.52 (0.18) 0.02 (0.01) 0.79 (0.09) 0.19 (0.08)

HNKPC-TV-LS-SV 0.06 (0.02) 0.04 (0.10) 0.22 (0.12) 0.44 (0.24) -0.01 (0.01) 0.82 (0.05) 0.15 (0.04)

Note: The table presents posterior means and standard deviations (in parentheses) of parameters
for the competing HNKPC type models estimated for quarterly inflation and real marginal costs
over the period 1960-I until 2012-I. λH and γH

f are the slope of the Phillips curve and the coefficient

of inflation expectations in HNKPC model in (22). γH
b is the coefficient of the backward looking

component in the HNKPC model in (22). βS is the autoregressive parameter for the deviation
of inflation expectations, as used in (22). ρ is the correlation coefficient of the residuals ϵ1 and
ϵ2. ϕ1 and ϕ2 are the autoregressive parameters for the real marginal cost specification. Posterior
results are based on 40000 simulations of which the first 20000 are discarded for burn-in. Model
abbreviations are as in Table 1 in the paper.

Table 6: Predictive performance of HNKPC models with unobserved inflation ex-
pectations

Model Cumulative MSFE
(Log) Pred. Likelihood 1 period ahead

HNKPC-TV -36.44 0.12
HNKPC-TV-LS -35.77 0.09
HNKPC-TV-LS-SV -17.96 0.09

Note: The table reports the predictive performances of competing models for the prediction sample
over the period 1973-II until 2012-I. ‘Cumulative (Log) Pred. Likelihood’ stands for the sum of
the natural logarithms of predictive likelihoods. ‘MSFE’ stands for the Mean Squared Forecast
Error. Results are based on 10000 simulations of which the first 5000 are discarded for burn-in.
Remaining abbreviations are as in Table 1 in the paper.

K Analysis of cointegration in inflation and marginal

cost levels

The models in the paper considered rely on the implicit assumption of the absence of

a long-run cointegrating relationship between the inflation and marginal cost series.

We assess whether this assumption is plausible for the U.S. data. For this reason, we

consider the NKPC-TV model that provides the unobserved levels of both series at

each posterior draw. For each of these obtained posterior draws, we perform a simple

two-step analysis to check the existence of the cointegrating relationship, which can

40



be seen as a Bayesian extension of the method of Engle and Granger (1987).

We perform a two step analysis, where in the first step we obtain the residuals

from the regression of the estimated level of inflation on a constant and the estimated

level of marginal costs, for each posterior draw. This implies that we take the

estimation uncertainty in the analysis into account. Next, we obtain the posterior

distribution of the autoregressive parameter, ρ, for each set of residuals from the

following regression using flat priors on the identified region ρ ∈ [−1, 1]

∆ϵ̂t = ρϵ̂t−1 + ηt, ηt ∼ NID(0, σ2), (23)

where ϵ̂t denotes the residuals from the first stage, and ρ = 0 implies that there

is no cointegrating relationship between the series. An HPDI including the value

of 0 indicates that a cointegrating relation between inflation and marginal cost is

unlikely.

We compute the mean and the quantiles of these individual densities using 5000

posterior draws, and report the average values of the mean and the quantiles of ρ

based on 3000 simulations. These results are presented in Figure 8. Posterior means

of parameter ρ are around 0 for all posterior draws of inflation and marginal cost

levels, and the 80% an 90% percent quantiles of the distribution are around 0 as

well. Hence this simulation experiment does not indicate a cointegrating relation-

ship between the inflation and marginal cost levels. This pattern is also found for

other TV-NKPC models we considered for the U.S. data, but these results are not

reported for the sake of brevity. We conclude that the underlying assumption of ‘no

cointegrating relationship’ is found to be feasible for the NKPC models we consider.
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Figure 8: Cointegration analysis for the marginal costs and inflation series
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Note: The figure presents the posterior means and quantiles of the ρ parameter from 5 × 103

posterior draws from the NKPC-TV models, where for each draw, the the reported values are
calculated using 3000 simulations. ρ = 0 implies that there is no cointegrating relationship between
the series.
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