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1 Appendix

The Appendix is organized into two subsections, with the first stating and
proving all intermediate lemmas that we require to establish the asymptotic
properties of the estimators. The second subsection employs these lemmas
to prove the main results in the paper.

1.1 Intermediate Results

From (D1-D7) of the Assumptions and Definitions section, recall that f̂1 (•)
estimates Pr(Y2 = 1)g1(w), where g1(w) is the density for W conditioned
on Y2 = 1. Similarly, f̂0 (•) estimates Pr(Y2 = 0)g0(w), where g0(w) is
the density for W conditioned on Y2 = 0. Throughout, all lemmas ap-
ply to both f̂1 (•) and f̂0 (•) . Accordingly, for notational convenience, we
will simply write f̂ (•) to refer to either of these estimators. In so do-
ing, we will refer to the local smoothing parameters as λ without sub-
scripting. Throughout, we will write ∇k

ηf to mean the kth partial deriva-

tive of f with respect to η, with ∇0
ηf ≡ f. Finally, in terms of nota-

tion, denote Xc and Xd as the vectors of continuous and discrete variables
respectively, with realizations xc εXc and xd εXd. With Xc1 as the subset
of Xc on which τx = 1 (see D6 ), define X1 ≡ {x : xc εXc1, xd εXd} .
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Recalling that w = [x1 + x3η31, x2 + x3η32] ≡ [w1 (η) , w2 (η)] , let X2 =
{x : wk < wk (η) < w̄k, k = 1, 2} . Finally, letA ≡{x : x ε X1 ∪ X2} . All uni-
form results will be on A, and, when appropriate, the compact parameter
space. Though not stated explicitly, for all of the results below, we employ
all assumptions in (A1-6) and (D1-7).

The estimated conditional densities above depend on the sample covari-
ance matrix for W . As W depends on the index parameters, η, we denote
this covariance matrix as Σ̂ (η) . With Σ (η) as the uniform (in η) probability
limit of Σ̂ (η) , Lemma 1 below will enable us to treat this estimated matrix
as if it were known.

Lemma 1: Denote f̂
(
w; Σ̂ (η)

)
as the estimator defined in (D1-3) and

denote f̂ (w; Σ (η)) as the corresponding estimator with Σ (η) replacing Σ̂ (η) .

Define f̂0 (•) analogously. Then:

sup
η,x̄

∣∣∣∇k
η f̂

(
w̄; Σ̂ (η)

)
−∇k

η f̂ (w̄; Σ (η))
∣∣∣ = op

(
N−1/2

)
, k = 0, 1, 2,

where uniformity is over the sets described above.

Proof of Lemma 1: From a Taylor series expansion:

∣∣∣∇k
η f̂

(
w; Σ̂ (η)

)
−∇k

η f̂m (w; Σ (η))
∣∣∣ ≤ sup

η,x

∣∣∣∇Σ∇k
η f̂

(
w; Σ̂ (η)

)∣∣∣ sup
η

∣∣∣Σ̂ (η)− Σ (η)
∣∣∣ .

Since f̂ converges to f even under an inconsistent estimator for Σ, it can be
shown that the first term above is op (1) . As the second term is Op

(
N−1/2

)
,

the result follows.

Employing Lemma 1, we will proceed with Σ (η) replacing Σ̂ (η) through-
out. To simplify the argument further, it is also convenient to replace all es-
timated components in local smoothing parameters with their expectations.
From (D2-3) estimated smoothing parameters are given as:

λ̂j =
[
d̂j γ̂j +

(
1− d̂j

)
/Ln(N)

]−1/2

≡ λ
(
γ̂j

)
,

where γ̂j ≡ [π̂j/m̂] and d̂ is the smoothed indicator:
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d̂j ≡
{

1 + exp

(
−N ε

[
γ̂j −

1

Ln (N)

])}−1

≡ d
(
γ̂j

)
.

Define γ̄j ≡ [E (π̂j) /m] , d̄j ≡ d
(
γj

)
, and

λ̄j ≡
[
γ̄j d̄j +

(
1− d̄

)
/Ln(N)

]−1/2
= λ

(
γ̄j

)
.

Write f̂
(
w̄; λ̂

)
as the estimator of f at w = x̄η and let f̂

(
w; λ̄

)
be the

corresponding estimator with λ̄ replacing λ̂. In the next three lemmas, we
examine convergence rates under multi-stage local smoothing. For estimated
densities and first derivatives Lemmas 2A−B provide the required interme-
diate results needed to establish convergence rates in the third stage of local
smoothing (Lemma 2C). Throughout, w ≡ x̄η.

Lemma 2A: Stage 1 (No local smoothing). Let λ̂1 = 1 Then, for
x̄ ε A η in a compact set, and k = 0, 1, 2:

a) : sup
x̄,η

∣∣∣∇k
η f̂ (w;1, h1)− E∇k

η f̂ (w;1, h1)
∣∣∣ = Op

(
1/

[
N1/2hk+2

1

])

b) : sup
x̄,η

∣∣∣E∇k
ηf̂ (w;1, h1)−∇k

ηf (w)
∣∣∣ = Op

(
h2

1

)
.

Proof of Lemma 2A: Standard bias and uniform convergence results
provide the proof (see Klein and Spady(1993)).

Employing the above results without local smoothing, Lemma 2B
below examines convergence rates in which local smoothing is based on the
density estimator in Lemma 2A.

Lemma 2B: Stage 2 (Local Smoothing). Let λ̂2 ≡ λ
(
f̂ (w; h1,1)

)
,

λ̄2 ≡ λ
(
E

[
f̂ (w; h1,1)

])
, and hi = O(N−ri), i = 1, 2. Assuming r1 < r2,

for k = 0, 1, 2:

a) : sup
x̄,η

∣∣∣∇k
ηf̂

(
w; λ̂2, h2

)
−∇k

η f̂
(
w; λ̄2, h2

)∣∣∣ = Op

(
1/

[
N1/2hk+2

2

])

b) : sup
x̄,η

∣∣∣∇k
ηf̂

(
w; λ̄2, h2

)− E∇k
η f̂

(
w; λ̄2, h2

)∣∣∣ = Op

(
1/

[
N1/2hk+2

2

])

c) : sup
x̄,η

∣∣∣E∇k
η f̂

(
w; λ̄2, h2

)−∇k
ηf (w)

∣∣∣ = Op

(
h2

2h
2
1

)
.
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Proof of Lemma 2B. Employing a Taylor series approximation, the
proof for (a) follows from the uniform convergence rate of λ̂2i to λ̄2i (Klein
and Spady, 1993, Lemma 1) and the window condition: r1 < r2. The proof for
(b) is essentially the same as that for (a). To establish (c), write (employing
a dominance condition to differentiate under an integral):

E
(
∇k

η f̂
(
w;2 , h2, λ̄2

))
= ∇k

ηE
(

f̂
(
w;2 , h2, λ̄2

)) ≡ ∇k
η∆2,

where the second expectation is taken with respect to the density for w.
Taylor expand ∆2 in h2 about h2 = 0 and use the symmetry in K about 0
to obtain:

∆2 = ∇k
ηh

2
2

[
Ĉ2 − C2

]
+∇k

ηh
2
2C2 + h4

2Ĉ4.

Here, Ĉ2
p→ C2, where C2 contains terms (densities and density derivatives)

that would follow from a Taylor series expansion using local smoothing pa-
rameters based on true densities.1 For the first term in ∆2, it consists of
estimated densities and density derivatives. From the rate at which the
expectation of an estimator (density or higher order derivatives) converges
to the truth:

h2
2

[
Ĉ2 − C2

]
= Op

[
h2

2h
2
1

]
.

From Abramson and Silverman, the second term vanishes as C2 = 0. The
argument now follows because in the final term: h2

2Ĉ4 = op (h2
1) .2 Referring

to (D2-4), C4 = O (N4a), where a = .01 is a local smoothing parameter.

1Local smoothing parameters employ separate trimming to keep local smoothing pa-
rameters from becoming smaller than Op (1/Ln(N)) . In taking a Taylor series expansion
about h2 = 0, derivatives of Local-smoothing trimming will appear. However, with den-
sities evaluated at a ”target” point for which they are bounded from below by c > 0, then
such derivatives will vanish exponentially (and can therefore be ignored). This deriva-
tive can not be ignored in the final term of such an expansion as it is evaluated at an
intermediate point.

2A typical term of Ĉ4 depends on the integral of the product of a term involving the
inverse of a density estimator raised to a power below 4 (T1), the fourth derivative of
a density estimator (T2), the fourth derivative of the smooth trimming function (T3),
the kernel, and the true density. Based on the smooth trimming of local smoothing,
uniformly:

|T1T3| = op

(
N .04Ln(N)

)

Given the uniform rate at which the fourth derivative of a density estimator converges to
the truth and the fact that h2

2N
.04Ln(N) = o

(
h2

1

)
, the result follows.
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Under assumptions on smoothing parameters, the final term is of smaller
order than the first, which completes the argument.3

Lemma 2C: Stage 3 (Local Smoothing). Let λ̂3 ≡ λ
(
f̂

(
w; λ̂2, h2

))

and hi = O(N−ri), i = 1, 2, 3. With ri > 0, assume r1 < r2 and that

r1 + r2 < r3. With λ̄2 given as above, define λ̄3 ≡ λ
(
f̂

(
w; λ̄2 , h2

))
.

Then, for k = 0, 1, 2 :

a) : sup
x̄,η

∣∣∣∇k
ηf̂

(
w; λ̂3, h3

)
−∇k

η f̂
(
w; λ̄3, h3

)∣∣∣ = Op

(
1/

[
N1/2hk+2

3

])

b) : sup
x̄,η

∣∣∣∇k
ηf̂

(
w; λ̄3, h3

)− E∇k
η f̂

(
w; λ̄3, h3

)∣∣∣ = Op

(
1/

[
N1/2hk+2

3

])

c) : sup
x̄,η

∣∣∣E∇k
η f̂

(
w; λ̄3, h3

)−∇k
ηf (w)

∣∣∣ = Op

(
h2

3h
2
2h

2
1

)
.

Proof of Lemma 2C. The proof of (a-b) is the same as that in the
previous lemma. For (c), define ∆3 as in the previous lemma with λ̄3

replacing λ̄2. Then from the same type of Taylor expansion as in the previous
theorem:

∆3 = ∇k
ηh

2
3

[
Ĉ∗

2 − C2

]
+ h4

3Ĉ
∗
3 .

From Lemma 2C, the first term above has order h2
3h

2
2h

2
1. With Ĉ∗

3 = O (N4a),
similar to the previous lemma, this last term is of smaller order than the first
under the assumptions on smoothing parameters, which completes the proof.

Employing the above results, it is now possible to establish uniform rates
of convergence (on compact sets) for estimated probability functions and
derivatives.

Lemma 3 (Estimated Probability Functions).

sup
x̄,η

∣∣∣∇k
ηP̂ (w; η)−∇k

ηP (w)
∣∣∣ = Op

(
max

{
1/

[
N1/2hk+2

3

]
, h2

3h
2
2h

2
1

})
.

3 With εa > 0 and arbitrarily small, set a = (r3 − εa) /8. Here, a = .01 and
r3 = 1/11. For δ < r3/2, set:

r1 = (r3 − δ) /4 and r2 = (r3 − δ/2) /2.

For these settings, r1 < r2 − 2a.
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Proof of Lemma 3. The proof immediately follows from the lemmas
above.

Below we will establish asymptotic normality by exploiting a ”residual”
property of semiparametric probability derivatives. The following lemma
provides this property.

Lemma 4. Let P (η) be the semiparametric probability function, where
P (η0) = Pr (Y2 = 1| X) . Then, with ∇η = ∇1

η as the first partial operator:

E [∇ηP (η) | W1 (η1) , W2 (η2)]η = η0
= 0.

Proof of Lemma 4. The proof of this result for the single index case is
due to Whitney Newey and is contained in Klein and Spady (1993) and Klein
and Sherman (2002). The extension to the double index case immediately
follows from the same type of argument employed for the single index case.

As a final set of intermediate lemmas, we require results to deal with
trimming. As discussed earlier, one trimming strategy below is based
on a trimming sequence defined on the X′s. In particular, recall from
(D6) that τ̂xi is a trimming indicator that is 1 on the set where each of the
continuous variables is in a region defined by sample quantiles (e.g. the lower
1% and upper 99% sample quantiles). We refer to this trimming indicator
as being estimated. Denote τxi as the corresponding trimming indicator
with all sample quantiles replaced by their population counterparts. Lemma
5 provides a useful result relating estimated to known trimming. As such
trimming occurs in normalized sums, the result below is written in this form
to facilitate its subsequent use below.

Lemma 5: X-Trimming. Let ri be random variables with E |ri|
bounded. Then, under X-trimming, for any ε > 0:

∣∣∣∣∣
1

N

N∑
i=1

[τ̂xi − τxi] ri

∣∣∣∣∣ ≤
M∑

m=1

Rm

N∑
i=1

bim |ri| /N +op

(
N−1/2

)
= Op

(
N−(1/2)+ε

)
,

where M is finite, Rm = Op

(
N−(1/2)+ε

)
, and bim is i.i.d., non-negative, and

bounded.
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Proof of Lemma 5. The proof for this lemma is based on an inequality
due to Jim Powell for bounding |(τ̂xi − τxi)| from above by a ”smoothed”
indicator.4 Once the indicator is smoothed, standard Taylor series argu-
ments yield the above result. Here, ε is the ”penalty” for approximating an
indicator with a smooth function.

We will also be employing a trimming strategy based on the indices.
Denote η̂kp, k = 1, 2, as a matrix pilot estimates of nuisance parameters
(obtained below under X-trimming) and define estimated indices as:

Ŵ1 ≡ X1 + X3η̂1p; Ŵ2 ≡ X2 + X3η̂2p

Recall that the smoothed trimming function in (D7) depends on η̂kp and
estimated sample quantiles. From (D2), we defined an underlying smooth
trimming function as:

τ (z; a) ≡ [ 1 + exp (Na [z])]−1 .

The estimated trimming function then applies this smooth trimming function
to each of the k = 1, 2 indices to insure that each indices stays (asymptoti-
cally) between lower and upper sample quantiles . Namely, from (D7),

τ̂wi ≡ τ̂ 1i τ̂ 2i, τ̂ ki ≡ L̂kiÛki,

L̂ki ≡ τ
(

wk

(
η̂p

)− wki

(
η̂p

)
; 1/12

)

Ûki ≡ τ
(
wki

(
η̂p

)− wk

(
η̂p

)
; 1/12

)
for k = 1, 2.

Here, wk

(
η̂p

)
is a lower sample quantile of the wki

(
η̂p

)′
s while wk

(
η̂p

)
is the

corresponding upper sample quantile. Letting η0, λkL, and λkU be the prob-
ability limits for η̂p, wk

(
η̂p

)
, and wk

(
η̂p

)
, τ i is obtained from τ̂ i by replacing

all estimates with their probability limits. Analogously, L and U are defined
by replacing all estimators by their population counterparts. To examine
estimated trimming, we require a rate at which estimated quantiles (wk

(
η̂p

)
,

wk

(
η̂p

)
) converge to the corresponding true quantiles. With virtually any

rate sufficing, Lemma 6 below provides a rate that is subsequently employed
in Lemma 7 in arguing that estimated trimming can be treated as known.

4This inequality was provided in a private communication to one of the authors and is
contained in Klein (1993, Lemmas 1-2, and the proof for Lemma 2).
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Lemma 6: Estimated Quantiles. Assuming
(
η̂p − η0

)
= op(N

−r),
r < 1/2 :

wk

(
η̂p

)− λkL = op

(
N−r+ε

)

wk

(
η̂p

)− λkU = op

(
N−r+ε

)
.

Proof of Lemma 6. It suffices to consider the lower αth quantile with
k = 1. With {•} is an indicator on the indicated event, for this case:

∑{
w1i

(
η̂p

)
< w1

(
η̂p

)}
/N = α.

Employing the same type of smooth approximation argument used in the
proof of Lemma 5 and with ε > 0 :

∑ [{
w1i

(
η̂p

)
< w1

(
η̂p

)}− {
w1i (η0) < w1

(
η̂p

)}]
/N = Op

(
N−(r−ε)

)
.

Define w10 such that:
∑

{w1i (η0) < w10} /N = α.

Then it follows from above that:
∑ [{

w1i (η0) < w1

(
η̂p

)}− {w1i (η0) < w10}
]
/N = Op

(
N−(r−ε)

)
.

Letting FN be the empirical distribution for the w1i (η0)’s :

FN

(
w1

(
η̂p

))− FN (w10) = Op

(
N−(r−ε)

)
.

From the uniform convergence of the empirical distribution function to the
the true distribution function, F :

F
(
w1

(
η̂p

))− F (w10) = Op

(
N−(r−ε)

) ⇒
w1

(
η̂p

)− w10 = Op

(
N−(r−ε)

)
.

The lemma now follows since:
∣∣w1

(
η̂p

)− λ1L

∣∣ ≤
∣∣w1

(
η̂p

)− w10

∣∣ + |w10 − λ1L| .

For the case of index-trimming, recall that the trimming function is a
smooth exponential function. In employing Taylor series arguments to ana-
lyze this function, it is important that trimming function derivatives behave
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as trimming functions themselves in that they severely downweight the same
observations as the initial trimming function. This follows, because deriva-
tives have the structure of being a bounded function multiplied by the initial
trimming function. For example:

∂

∂z
τ (z) = [τ − 1] τ ;

∂2

∂z∂z
τ (z) = [(2τ − 1) (τ − 1)] τ .

The proof of Lemma 7 below, which is essentially the same as that in Klein
and Spady[1993], exploits this replicative property.

Lemma 7: Index-Trimming. Let
(
η̂p − ηo

)
= O (N−rp) , and assume

rp > r3, with h3 = Op (N−r3) as specified in (D4). Then, for Rm = op (1) ,
M is finite, and bim is i.i.d. and bounded over i for each m.

a) : N−1/2
∑

[τ̂wi − τwi] [Yi − Pi] ρ̂ =
M∑

m=1

Rm

√
N

∑
bimτwi [Yi − Pi] ρ̂/N + op (1)

b) : N−1/2
∑

[τ̂wi − τwi]
[
P̂i − Pi

]
ρ̂i = op (1.)

Proof of Lemma 7. To establish (a), expand the components of τ̂wi in
a Taylor series expansion, to obtain

√
N

∑
i

[τ̂wi − τwi] [Yi − Pi] ρ̂i/N =
√

N

D∑

d=1

Td/N ,

Td ≡
Sd∑

sd=1

Rsd

∑
i

bisd
τwi [Yi − Pi] ρ̂i, d = 1, ..., D − 1

|TD| ≤
SD∑

sD=1

RsD

∑
i

bisD
|ρ̂i| ,

where Sd is finite, d = 1, ..., D and bisD
is i.i.d. over i and bounded. With

D selected such that D (r − a) > 1/2 + 2r3, d and D are both finite. The
R-terms satisfy:

Rsd
= Op

(
N−d(r−a)

)
, d = 1, ..., D − 1

RsD = Op

(
N−D(r−a)

)
, D (r − a) > 1/2 + 3r3.
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The result now follows.

N1/2N−d(r−a) sup τ
1/2
i

∣∣∣P̂i − Pi

∣∣∣
∑

i

τ
1/2
i bisd |ρ̂i| = op (1)

N1/2N−D(r−a) sup
∣∣∣P̂i − Pi

∣∣∣ N2r3 = op (1) .

The argument for (b) is similar.

To establish asymptotic normality in the next section, we will need to
analyze several components that comprise the gradient. To simplify the ex-
position, we examine these components in Lemmas 8A-B below. In providing
these results, recall that we use the notation τx and τw to refer respectively
to X-trimming and Index-trimming. We employ the notation τ without x or
w subscript for results that hold under either form of trimming. These gra-
dient components have a standard form and depend on an estimated weight
involving probability derivatives (see D5). With

P̂ ≡
[
f̂1 + ∆̂1

]
/
[
ĝ + ∆̂

]
≡ f̂ ∗1 /ĝ∗

denote the estimated weight as ρ̂∗i :

ρ̂∗i = ∇ηP̂i(η0)/
[
P̂i(1− P̂i)

]
=

[
∇η

(
f̂ ∗i (η0) /ĝ∗i (η0)

)]
/P̂i(1− P̂i)

=
ĝ∗i (η0)∇ηf̂

∗
i (η0)− f̂ ∗i (η0)∇ηĝ

∗
i (η0)

ĝ∗2i (η0) P̂i(1− P̂i)
≡ r̂∗i

ŝ∗i
,

With all ∆̂ adjustmen adjustment factorst ignored (they vanish exponentially
under the trimming employed below), the unadjusted probability is then
P̂u ≡ f̂1/ĝ and the corresponding weight function becomes:

ρ̂i =
ĝi (η0)∇ηf̂i (η0)− f̂i (η0)∇ηĝi (η0)

ĝ2
i (η0) P̂ui(1− P̂iu)

≡ r̂i

ŝi

,

Lemma 8A: Primary Gradient Components. Define:

A1 =
∑

τ i [ Yi − Pi] ρ̂
∗
i /N ; A2 =

∑
[τ̂ i − τ i] [ Yi − Pi] ρ̂

∗
i /N

Then:

1) : N1/2A1 = N−1/2
∑

τ i [ Yi − Pi] ρi + op (1)

2) : N1/2A2 = op (1) , for τ̂ i − τ i = τ̂wi − τwi

3) : N rpA2 = op (1) , for τ̂ i − τ i = τ̂xi − τxi and rp > r3.
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Proof of Lemma 8A. Beginning with A1, in (1), let:

δ ≡ N−1/2
∑

i

τ i [Yi − Pi] [ρ̂
∗
i − ρi] = op(1).

With adjustment functions vanishing exponentially, δ ≡ δ1+δ2+op(1), where:

δ1 = N−1/2
∑

i

τ i [Yi − Pi] [ρ̂i − ρi] (ŝi/si)

δ2 = N−1/2
∑

i

τ i [Yi − Pi] [ρ̂i − ρi] [(ŝi/si)− 1] .

Here,

|δ2| ≤ N−1/2 sup
∣∣∣τ 1/2

i [ρ̂i − ρi]
∣∣∣ sup

∣∣∣τ 1/2
i [(ŝi/si)− 1]

∣∣∣ ,

which is op(1) from Lemma 2C. Therefore, to show that δ = op (1), it suffices
to show δ1 = op (1) . We have:

δ1 = N−1/2
∑

i

τ i [Yi − Pi]
[
si (r̂i − ri)− ri (ŝ− si) /s2

i

]
.

In what follows, we analyze the first term above, with an analogous argument
holding for the second. Let :

∆ ≡ N−1/2
∑

i

τ i [Yi − Pi] si (r̂i − ri)

and write:

∆ = N−1/2
∑

i

τ i [Yi − Pi] si

[
( ĝi − gi)∇ηfi +

(
∇ηf̂i −∇ηfi

)
ĝi

]

≡ .∆11 + ∆12

As the analysis for both of the above terms is similar, here we analyze the
first. Exploiting the fact that [Yi − Pi] has 0 conditional expectation, we
show that ∆11 = op (1) by showing that its expected square converges to
zero. With εi ≡ si (ĝi − gi)∇ηfi :

E
(
∆2

11

)
= E

[∑
i

τ 2
i [Yi − Pi]

2 ε2
i /N

]
+

∑

i6=j

∑
E [(τ i [Yi − Pi] εi) (τ j [Yj − Pj] εj)] /N.
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The first term is bounded from above by:

∑
i

E
(
τ 2

i ε
2
i

)
/N,

which converges to zero. Employing the fact that E [Yi − Pi | Xi] = 0, it
can be shown that the second term also converges to zero. The result now
follows.

Turning to (2), the argument for the smooth index-trimming function
is based on a Taylor expansion of τ̂wi, the observation that the derivative of
a trimming function behaves as a trimming function, and the proof for A1

above. Lemma 7 contains the details of this argument from which (2) follows.
For (3), the argument is based on a characterization result for indicator X-
trimming in Lemma 5.

Lemma 8B: Secondary Gradient Components. Define

B1 =
∑

τ i

[
P̂i − Pi

]
ρ̂∗i /N ; B2 =

∑
[τ̂ i − τ i]

[
P̂i − Pi

]
ρ̂∗/N.

Then:

1) : N1/2B1 = op (1) and N1/2B2 = op (1) for τ̂ i − τ i = τ̂wi − τwi

2) : N rpB1 = op (1) , N rpB2 = op (1) for: τ̂ i − τ i = τ̂xi − τxi, rp > r3.

Proof of Lemma 8B. As above with adjustment factors vanishing
exponentially, we may replace ρ̂∗i with ρ̂i throughout. Proceeding with this
subsittution, we first simplify B1 by showing::

∆ ≡ N−1/2
∑

i

τwi

[
P̂i − Pi

]
[ρ̂i − ρi] = op (1) .

Bounding this term:

|∆| = N−1/2

∣∣∣∣∣
∑

i

τwi

[
P̂i − Pi

]
[ρ̂i − ρi]

∣∣∣∣∣
≤ N1/2 sup

∣∣∣τ 1/2
wi

[
P̂i − Pi

]∣∣∣ sup
∣∣∣τ 1/2

wi [ρ̂i − ρi]
∣∣∣ ,
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which is op (1) from Lemma 3. Therefore:

N1/2B1 = N−1/2
∑

i

τwi

[
P̂i − Pi

]
ρi + op (1) .

To further simplify B1 and show that it is op

(
N−1/2

)
, note that under an

argument similar to that above:

N−1/2
∑

i

τwi

[
P̂i − Pi

]
ρi [(ĝi/gi)− 1] = op (1) ,

which implies:

N1/2B1 = N−1/2
∑

i

τwi

[
P̂i − Pi

]
ρi (ĝi/gi) + op (1) .

Next, recall that P̂i =
[
f̂i + ∆̂1N

]
/
[
ĝi + ∆̂N

]
. Under τ -trimming, the ∆-

adjustment factors and their derivatives vanish exponentially when evaluated
at the true densities. Accordingly, under a Taylor series argument, we may
replace P̂i with f̂i/ĝi to obtain:

N1/2B1 = N−1/2B∗
1 + op (1) , B∗

1 ≡
∑

i

τwi

[
f̂i − Piĝi

]
ei, ei ≡ ρi/gi.

Noting that ei has expectation conditioned on the indices of 0 (Lemma 4),
employ the same type of mean-square convergence argument used to analyze
A. We have:

E
[(

N1/2B∗
1

)2
]

=
1

N
E

[∑
i

τ 2
wi

[
f̂i − Piĝi

]2

e2
i

]
+ C,

C =
∑

i6=j

∑
E

[
τwi

(
f̂i − Piĝ

)
τwj

(
f̂j − Pj ĝj

)
eiej

]
/N.

It can readily be shown directly that the first term above vanishes for large
N . Turning to the cross-product terms in C, from iterated expectations:

C = EE
[
τwi

(
f̂i − Piĝ

)(
τwj

[(
f̂j − Pj ĝj

)]
eiej

)
| X

]

= E
[
E

[
τwi

(
f̂i − Piĝ

)(
τwj

[(
f̂j − Pj ĝj

)])
| X

]
eiej

]
.
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As the inner expectation only depends on the indices W : Nx2, denote this
inner expectation as H (W ) and write:

C = E [H (W ) eiej] = E [H (W ) E [eiej] | W ] = 0,

with the last result directly following from Lemma 4. The proof for B1 in
(1) now follows.

The proof for B2 in (1), which is analogous to that for A2 in Lemma 8A,
part (2), readily follows from Lemma 7. To establish (2), we need to analyze
B1 and B2 under X-trimming, The argument here, which is essentially the
same as that for A2 in Lemma 8A, part 3, follows from Lemma 5.

1.2 Main Results

As in the previous section, throughout this section, all results are provided
under Assumptions (A1-6) and Definitions (D1-7).

Theorem 1. With τ̂ i = τ̂xi or τ̂wi, define the quasi-likelihood as in
Section 4.1:

Q̂ (η) ≡ 1

N

N∑
i=1

τ̂ i

(
Y2iLn

[
P̂i(η)

]
+ [1− Y2i] Ln

[
1− P̂i(η)

] )

and define η̂ ≡ arg sup Q̂ (η) . Then : η̂
p→ η0, the vector of true parameter

values.

Proof of Theorem 1. Employing (D5) and deleting the i subscript for
notational simplicity, define the probability functions:

P̂ (η) ≡
[
f̂1 + ∆̂1

]
/
[
ĝ + ∆̂

]

PN(η) ≡ [f1 + ∆N ] / [g + ∆N ]

P (η) ≡ f1/g.

With PN(η) replacing P̂ (η) throughout, denote QN (η) as the corresponding
objective function. Finally, denote Q (η) as the objective function obtained
by replacing P̂ (η) with P (η) throughout. Then:

∣∣∣Q̂ (η)−Q (η)
∣∣∣ ≤

∣∣∣Q̂ (η)−QN (η)
∣∣∣ + |QN (η)−Q (η)| .
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Employing arguments similar to those in Klein and Spady (1993) and Lemma
4, it can be shown that each of these terms vanish in probability, uniformly
in η.5 Next, write:

Q (η) ≡ 1

N

N∑
i=1

τ̂ i [ Y2iLn [Pi(η)] + [1− Y2i] Ln [1− Pi(η)]] ≡ Q̄ (η) + R,

Q̄ (η) ≡ 1

N

N∑
i=1

τ i [ Y2iLn [Pi(η)] + [1− Y2i] Ln [1− Pi(η)]]

R ≡ 1

N

N∑
i=1

[ τ̂ i − τ i] [ Y2iLn [Pi(η)] + [1− Y2i] Ln [1− Pi(η)]] .

It can be shown that R vanishes in probability, uniformly in η. From standard
uniform convergence arguments:

sup
η

∣∣Q̄ (η)− E
[
Q̄ (η)

]∣∣ p→ 0.

Employing the identification condition in (A5), E
[
Q̄ (η)

]
is uniquely max-

imized at η0, which completes the argument.

Theorem 2. Defining H0 ≡ ∇2
ηE (L (η0)) :

√
N [η̂ − η0]

d→ N
(
0,−H−1

0

)
.

Proof of Theorem 2. With the quasi-likelihood defined under X-
trimming (see D6) and with η+ ε [η̂, η0] , from a standard Taylor series
expansion:

N rp
[
η̂p − η0

]
= −Ĥ

(
η+

)−1
N rpĜ(η0),

Ĥ
(
η+

)
= ∇2

ηL̂
(
η+

)
, Ĝ(η0) = ∇1

ηL̂ (η0) ,

5In analyzing the first term, it is important to exploit the fact that the δ-adjustment
factors behaving as trimming functions in that they control the rate which denominators
in various expressions tend to zero [see Klein and Spady (1993, proof of lemma 4, p. 414)]

To analyze the second term, it is important to note that from the assumption of bounded
X′s, it follows that P (ηo) is strictly bounded away from one and zero. It then follows
that P (η) , a conditional expectation of P (ηo) , is also strictly bounded away from one
and zero. While the assumption of bounded X′s could be replaced by tail conditions,
this assumption considerably simplifies the argument for the second term. [see Klein and
Spady (1993, Proof of Theorem 3, p. 415)].
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where we have employed X-trimming. Beginning with the Hessian compo-
nent, as in the previous theorem define the probability functions: P̂ (η),
PN(η), and P (η) . From Lemma 3 and arguments very similar to those em-
ployed to analyze the averaged likelihood in Theorem 1, it can be shown
that:

sup
η

∣∣∣Ĥ (η)−H (η)
∣∣∣ p→ 0.

From standard uniform convergence arguments, H (η) converges in proba-
bility and uniformly in η to its expectation. It follows that Ĥ (η+)

−1
=

H−1
0 (η0) + op(1). Therefore, a convergence rate for the pilot estimator, η̂p,

will follow from the rate at which the gradient converges to zero.
In the notation of Lemmas 8A and 8B:

N rpĜ(η0) = N rp [A1 + A2 ] + N rp [ B1 + B2]

From Lemmas 8A and 8B, it now follows that:

N rp
[
η̂p − η0

]
= op (1) , rp > r3.

Employing the η̂p to construct a smooth Index-trimming function, employ
the quasi-likelihood under Index-trimming (D7) and a Taylor series expansion
to obtain:

N1/2 [η̂ − η0] = −Ĥ
(
η+

)−1
N1/2Ĝ(η0).

As above, Ĥ (η+)
−1

= H−1
0 (η0) + op(1). From Lemmas 8A and 8B:

N1/2Ĝ(η0) = N−1/2
∑

τwi [ Yi − Pi] ρi + op (1)

≡ N1/2G(η0) + op (1) ,

where G(η0) is the gradient term with all estimated functions replaced by
their (uniform) probability limits. The theorem now follows from a standard
central limit theorem.

Turning to the outcomes equation, recall that it is given as:

Y1 = Zθo + u,
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θo ≡ [βo, µo] and Z ≡ [X, Y2]. Then, the IV estimator is given as :

α̂IV =
[
Ẑ∗ (η̂)′ Z

]−1

Ẑ
∗
(η̂)′ Y1, Ẑ∗ (η) ≡

[
X, P̂ (η)

]

Consistency and asymptotic normality (Theorem 3 of Section 4.2) will now
be immediate if the conditions given in the next lemma hold.

Lemma 8: With Z∗ ≡ [X, P (η0)] , under Assumptions (A1-4) and
Definitions (D1-5):

1) :
[
Ẑ∗ (η̂)′ Z − Z∗′Z

]
/N = op(1),

2) :
√

N
[
Ẑ∗ (η̂)′ u− Z∗u

]
/N = op(1).

Proof of Lemma 8. The first condition follows from Theorem 2 and
Lemma 3. The second condition follows from a standard U-Statistics ar-
gument and is to be expected from Newey and McFadden (Handbook of
Econometrics, vol. 4, Chapter 36, section 6.2 and Theorem 6.2).
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