Replication package for "Approximating Grouped Fixed Effects Estimation via Fuzzy Clustering Regression" by Daniel Lewis, Davide Melcangi, Laura Pilossoph, and Aidan Toner-Rodgers

Required Matlab Toolboxes

Our code is run using Matlab 2022A and requires the following toolboxes:

- Statistics and machine learning toolbox
- Optimization toolbox
- Parallel computing toolbox

How to Run

The bash file runall.sh runs all the necessary Matlab files to reproduce the tables and figures in the main text and appendix.

- It first runs fig1.m and and fig2.m, which apply our estimator to the data of <u>Bonhomme and</u> <u>Manresa (2015)</u> (henceforth BM) and plot a comparison of our estimates with grouped fixed effects.
- Next, it runs simulate_panel.m, which sets up the simulated data for our subsequent exercises.
- Using this simulated data, we then run table1.m and tableB1.m, which calls our estimator using a variety of starting values and group numbers to produce the results for Table 1 in the main text and Table B1 in the appendix.
- Finally, fig3.m runs our estimator on a number of dataset sizes to produce Figure 3.

Repository Structure

- data/raw: contains the raw data, which come from the BM replication files
- data/intermediate: stores intermediate files
- code: contains file to produce all tables and figures in the main text and appendix, using functions stored in code/functions
- output: stores results for all tables and figures

Description of Data

All our data come from BM. Specifically, we use final_data.mat which is the dataset used in their empirical application. BM_LHS_panel.mat and BM_RHS_panel.mat simply split this dataset into the outcome and covariates of our regression specification, respectively. Additionally, we use the files BM_coeffs.mat and BM_fe_4G.mat which are coefficient estimates stored in the BM replication package (and replicated by us).

For further details on the data including variable definitions see the BM <u>replication package</u>.

Parallelization

Our main estimation is run with 250 parallel cores. However, the code can be run with any number of cores (just adjust parpool) although this will change computation time.

Bonhomme and Manresa (2015) Replication

The replication of the Bonhomme and Manresa (2015) results is run using their replication code, which can be found <u>here</u>.