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This is the technical appendix of the paper entitled “Semiparametric Estimation and Variable

Selection for Single-Index Copula Models”.

Appendix

A: Asymptotic Properties for Unpenalized Estimators

To study the asymptotic properties of the unpenalized estimators, we introduce the following

assumptions:

(A1) The copula is Lipschitz continuous in its dependence parameter θ. The function θ(·) is

continuous, bounded, not constant everywhere and has second order continuous derivatives

on AΛ with AΛ being the domain of Λ.

(A2) There exists no perfect multicollinearity within the components of W , and none of the

components of W is constant.

(A3) The first element of γ is positive and ‖γ‖ = 1, where ‖ · ‖ is the Euclidean norm (L2 norm).

(A4) For any γ ∈ Aγ and Λ ∈ AΛ, the density function f(Λ) is continuous and there exists ε > 0

such that f(Λ) ≥ ε.

(A5) The copula likelihood function `ct(ψ, γ, θ) has bounded third derivative with respect to θ

and bounded second derivatives with respect to ψ. The marginal likelihood function `mt(ψ)

has bounded second derivative with respect to ψ.
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(A6) The kernel function k(z) is twice continuously differentiable on its support, and its second

derivative satisfies a Lipschitz condition. Define the kernel constants µ2 =
∫
z2k(z)dz <∞

and ν0 =
∫
k2(z)dz <∞.

(A7) The bandwidth h satisfies h→ 0 and Th→∞, as T →∞.

(A8) Assume that {Xt, Zt}Tt=1 is a strictly stationary α-mixing sequence. There exists some

constant c > 2 such that E‖Xt‖c < ∞, E‖Zt‖c < ∞ and E‖`′ct(θ0(Λ))‖c < ∞, and the

mixing coefficient α(`) satisfying
∑

l≥1 `
c1α(`)1−2/c < ∞ for some c1 > 1 − 2/c. Further,

assume that there exists a sequence of positive integers satisfying `T → ∞ and `T =

op((Th)1/2) such that (T/h)1/2α(`T )→ 0 with h being the bandwidth, as T →∞.

(A9) lim
T→∞

{
√
Tp′λT (|γk|)} = 0 and p′′λT (|γk|)→ 0 for k = 1, . . . , d1, and lim

T→∞
{
√
T inf |γk|≤C/

√
T p
′
λT

(|γk|)}

→ ∞ for k = d1 + 1, . . . , d, and for any C > 0.

Many commonly used copulas, such as the Gaussian, Clayton, and Gumbel copula, satisfy As-

sumption (A1). Assumptions (A2)-(A3) are mild conditions for identification. It is obvious that

γ cannot be identified if θ is a constant. The no perfect multicollinearity condition in Assumption

(A2) is similar to that in classical linear models. A constant is excluded from W as it can be ab-

sorbed by the nonparametric function θ. As γ is identified up to sign and scale, Assumption (A3)

imposes sign and scale restrictions for identification. Assumption (A4) is imposed so that nonpara-

metric estimators are well defined. Assumption (A5) is for deriving the asymptotic distribution.

Assumptions (A6) and (A7) are common in nonparametric estimation. In our simulation and em-

pirical study, the commonly adopted Epanechnikov kernel function k(u) = 3/4(1− u2)I(|u| ≤ 1)

is used, where I(|u| ≤ 1) takes the value 1 if |u| ≤ 1 and 0 otherwise. Assumption (A8) is for

weakly dependent data, which can also be found in Section 6.6.2 in the book of Fan and Yao

(2005). Many time series processess, such as ARMA and GARCH which are widely used in fi-

nance and econometrics, satisfy the α-mixing conditions under some mild conditions (e.g., Cai,

2002; Basrak, Davis and Mikosch, 2002). Assumption (A9) holds when the tuning parameter

λT → 0 and
√
TλT → ∞ as T → ∞, which are commonly employed in SCAD-based variable

selection; see Fan and Li (2001) for details.

We define ξ̃ = (ψ̂ᵀ, γ̃ᵀ)ᵀ with γ̃ being the unpenalized estimator of γ. The asymptotic prop-

erties for ξ̃ is summarized in the following theorem.

Theorem A.1 Let {Xt, Zt}Tt=1 be a strictly stationary α-mixing sequence following the index
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copula model in (??). Under Assumptions (A1)-(A9), as T →∞, ‖ξ̃ − ξ0‖ = Op(T
−1/2) and

√
T (ξ̃ − ξ0)

d→ N(0, V ),

where V = M−1Ω(M−1)ᵀ with M = − 1
T E ∂Π(θ0,mw, ξ0)/∂ξ and Ω =

∑∞
j=−∞ Γj with Γj =

Cov (ζt, ζt−j) and ζt = (`′mt(ψ0)ᵀ, πt(θ0,mw, ξ0)ᵀ)ᵀ.

If the random vector sequence {ζt}∞t=1 is either i.i.d. or a martingale difference sequence, then

the long-run variance Ω simplifies to Ω = Γ(0) = Var(ζt). Otherwise, the autocovariance function

Γ(j) may not be zero at least for some lag j 6= 0 due to the serial correlation of ζt.

Remark 1. To find the asymptotic distribution of the unpenalized estimator γ̃ in the index copula

model, we define ι = (0, Id), where 0 is a d × dm matrix of zeros, and Id is the d-dimensional

identity matrix, where dm and d are the dimensions of ψ and γ, respectively. Then, as T → ∞,
√
T (γ̃ − γ0)

d→ N(0, Vγ) where Vγ = ιV ιᵀ.

B: Mathematical Proofs

In this subsection, we prove the main results of theorems in Appendix A and Section 2.

Proof of Theorem A.1: The proof for Theorem A.1 is similar to the proof of Theorem 2

without the penalty term, so we omit it here.

�

Lemma 1. For any given constant C,

sup
‖ξ−ξ0‖≤CT−1/2

∥∥∥T−1/2Π(θ̂, m̂w, ξ)− T−1/2Π(θ0,mw, ξ0) + T 1/2M(ξ − ξ0)
∥∥∥ = op(1)

where M = − 1
T E ∂Π(θ0,mw, ξ0)/∂ξ.

Proof : We have

T−1/2Π(θ̂, m̂w, ξ)− T−1/2Π(θ0,mw, ξ0)

= T−1/2Π(θ̂, m̂w, ξ)− T−1/2Π(θ̂,mw, ξ) + T−1/2Π(θ̂,mw, ξ)− T−1/2Π(θ0,mw, ξ)

+T−1/2Π(θ0,mw, ξ)− T−1/2Π(θ0,mw, ξ0)

.
= A1 +A2 +A3
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where

A1 = T−1/2Π(θ̂, m̂w, ξ)− T−1/2Π(θ̂,mw, ξ)

=
1√
T

T∑
t=1

 `′mt

`′ct(ψ, γ, θ̂)θ̂
′(Λt)(Wt − m̂w(Λt))

− 1√
T

T∑
t=1

 `′mt

`′ct(ψ, γ, θ̂)θ̂
′(Λt)(Wt −mw(Λt))


=

1√
T

T∑
t=1

 0

`′ct(ψ, γ, θ̂)θ̂
′(Λt)(mw(Λt)− m̂w(Λt))

 .

Define Rt = `′ct(ψ, γ, θ̂)θ̂
′(Λt)(mw(Λt)− m̂w(Λt)). Note that

Var(R1) = E{`′2c1(ψ, γ, θ̂)θ̂
′2(Λ1)(mw(Λ1)− m̂w(Λ1))2} = Op(

1

Th
)

By stationarity, we have

Var(
1√
T

T∑
t=1

Rt) = Var(R1) +
T−1∑
s=1

(1− s/T )cov(R1, Rs+1).

Following the same technology on pages 251-252 of Fan and Gijbels (1996), we can show∑T
s=1 |cov(R1, Rs+1)| = op(

1
Th). It follows that

Var(
1√
T

T∑
t=1

Rt) = op(1) and A1 = op(1).

Next,

A2 = T−1/2Π(θ̂,mw, ξ)− T−1/2Π(θ0,mw, ξ)

=
1√
T

T∑
t=1

 0[
`′ct(ψ, γ, θ̂)θ̂

′(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)
]

(Wt −mw(Λt))


and

T−1/2
T∑
t=1

[
`′ct(ψ, γ, θ̂)θ̂

′(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)
]

(Wt −mw(Λt))

= T−1/2
T∑
t=1

[
`′ct(ψ, γ, θ̂)θ̂

′(Λt)− `′ct(ψ, γ, θ̂)θ′0(Λt)
]

(Wt −mw(Λt))

+T−1/2
T∑
t=1

[
`′ct(ψ, γ, θ̂)θ

′
0(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)

]
(Wt −mw(Λt))

.
= A21 +A22
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By the same precedures for proving A1, we can show

A21 = T−1/2
T∑
t=1

[
`′ct(ψ, γ, θ̂)θ̂

′(Λt)− `′ct(ψ, γ, θ̂)θ′0(Λt)
]

(Wt −mw(Λt)) = op(1),

and

A22 = T−1/2
T∑
t=1

[
`′ct(ψ, γ, θ̂)θ

′
0(Λt)− `′ct(ψ, γ, θ0)θ′0(Λt)

]
(Wt −mw(Λt))

= T−1/2
T∑
t=1

[
{`′′ct(ψ, γ, θ0)(θ̂ − θ0)}{1 + op(1)}

]
θ′0(Λt)(Wt −mw(Λt))

= op(1).

This implies that A2 is of order op(1). Finally,

A3 = T−1/2Π(θ0,mw, ξ)− T−1/2Π(θ0,mw, ξ0)

= T−1/2{(∂Π(θ0,mw, ξ0)/∂ξ)(ξ − ξ0)}{1 + op(1)}

=
√
T (−M)(ξ − ξ0) + op(1).

Therefore, T−1/2Π(θ̂, m̂w, ξ)−T−1/2Π(θ0,mw, ξ0)+T 1/2M(ξ−ξ0) = A1+A2+A3+T 1/2M(ξ−ξ0) =

op(1), which implies the stated result.

�

Proof of Theorem 1:

Let ξ = ξ0 + T−1/2v with ‖v‖ = C. For any small constant ε > 0, if we can show there exists a

large constant C such that

P

{
min

‖ξ−ξ0‖=T−1/2C

√
T (ξ − ξ0)ᵀ(−Mᵀ)

1√
T

ΠP (θ̂, m̂w, ξ) > 0

}
> 1− ε,

where ΠP (θ̂, m̂w, ξ) = Π(θ̂, m̂w, ξ)−Tp′λ(|ξ|)sgn(ξ), then we can choose a
√
T -consistent estimator

ξ̂ satisfying both ||ξ̂ − ξ0|| = Op(1/
√
T ) and ΠP (θ̂, m̂w, ξ̂) = 0.

Lemma 1 implies

√
T (ξ − ξ0)ᵀ(−Mᵀ)

1√
T

ΠP (θ̂, m̂w, ξ)

=
√
T (ξ − ξ0)ᵀ(−Mᵀ)

[
1√
T

Π(θ0,mw, ξ0)−
√
TM(ξ − ξ0)−

√
Tp′λ(|ξ|)sgn(ξ) + op(1)

]
≥

√
T (ξ − ξ0)ᵀ(−Mᵀ)

1√
T

Π(θ0,mw, ξ0) +
√
T (ξ − ξ0)ᵀMᵀM

√
T (ξ − ξ0)
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+
√
T (ξ − ξ0)ᵀM2

√
Tp′λ(|γ1|)sgn(γ1)

=
√
T (ξ − ξ0)ᵀ(−Mᵀ)

1√
T

Π(θ0,mw, ξ0) +
√
T (ξ − ξ0)ᵀMᵀM

√
T (ξ − ξ0)

+
√
T (ξ − ξ0)ᵀM2{

√
Tp′λ(|γ10|)sgn(γ10) +

√
Tp′′λ(|γ10|)(γ1 − γ10)}{1 + op(1)} (1)

where M2 is a submatrix of the partition Mᵀ = (M1,M2,M3) with M1, M2 and M3 being

(dm + d)× dm, (dm + d)× d1 and (dm + d)× (d− d1) matrices, respectively.

The first term on the right hand side of the last inequality in (1) is of order C ∗Op(1) and the

second term is of order C2 ∗Op(1). Using Assumption (A9),
√
Tp′λ(|γ10|)→ 0 and p′′λ(|γ10|)→ 0.

By choosing the constant C sufficiently large, the second term will dominate the other two terms.

This completes the proof.

�

Proof of Theorem 2: We first show the sparsity with γ̂2 = 0. Suppose a
√
T -consistent

estimator ξ̂∗ = (ψ̂ᵀ, γ̂ᵀ1 , γ̂
ᵀ
2 )ᵀ with γ̂2 6= 0 such that ΠP (θ̂, m̂w, ξ̂

∗) = 0 exists. By Lemma 1,

1√
T

Π(θ0,mw, ξ0)−
√
TM(ξ̂∗ − ξ0) + op(1) =

√
Tp′(ξ̂∗)sgn(ξ̂∗). (2)

The first two components on the left hand side of (2) are of order Op(1). However, the last d−d1

elements of
√
Tp′(ξ̂∗) on the right hand side diverge to infinity by Assumption (A9). Therefore,

by contradiction, we conclude that γ̂2 = 0 must hold.

Second, we show asymptotic normality. By Lemma 1, we have

1√
T

Π(θ0,mw1 , ξ10)−
√
TM1(ξ̂1 − ξ10) + op(1) =

√
Tp′(ξ̂1)sgn(ξ̂1)

where ξ̂1 = (ψ̂ᵀ, γ̂ᵀ1 )ᵀ. The term
√
Tp′(ξ̂1) = 0 as T →∞ according to the conditions in (A9). It

follows that
√
TM1(ξ̂1 − ξ10) =

1√
T

Π(θ0,mw1 , ξ10) + op(1).

Further, the condition (i) of Theorem 2.21 in Fan and Yao (2005) holds by Assumption (A8), and

the asymptotic normality can be obtained by Theorem 2.21 in Fan and Yao (2005).

�

For the proof of Theorem 3 we need the following lemma.

Lemma 2. Assume that the parametric estimators ψ̂ and γ̂ and the local constant estimator

θ̂ are obtained from the three-step procedure of Section 2.1 and satisfy ‖ψ̂ − ψ0‖ = Op(1/
√
T ),
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‖γ̂ − γ0‖ = Op(1/
√
T ) and ‖θ̂ − θ0‖ = Op(1/

√
Th). Define the local log-likelihood function as

Lh(ψ, γ, θ) =

T∑
t=1

`ct(ψ, γ, θ)kh(γᵀWt − Λ),

where `ct(ψ, γ, θ) = log c(ut; θ(γ
ᵀWt)). Under Assumptions (A1)-(A9), we have

Lh(ψ̂, γ̂, θ̂)− Lh(ψ0, γ0, θ0) = Lh(ψ0, γ0, θ̂)− Lh(ψ0, γ0, θ0) + op(1/h).

Proof: Let

Lh(ψ̂, γ̂, θ̂)− Lh(ψ0, γ0, θ0)

= Lh(ψ̂, γ̂, θ̂)− Lh(ψ̂, γ0, θ̂)︸ ︷︷ ︸
I1

+Lh(ψ̂, γ0, θ̂)− Lh(ψ0, γ0, θ̂)︸ ︷︷ ︸
I2

+Lh(ψ0, γ0, θ̂)− Lh(ψ0, γ0, θ0)︸ ︷︷ ︸
I3

.

By Taylor expansion and the conditions ‖ψ̂ − ψ0‖ = Op(1/
√
T ), ‖γ̂ − γ0‖ = Op(1/

√
T ) and

‖θ̂ − θ0‖ = Op(1/
√
Th), the first term I1 is given by

I1 = Lh(ψ̂, γ̂, θ̂(ψ̂, γ̂))− Lh(ψ̂, γ0, θ̂(ψ̂, γ0))

=

[
1√
T

∂Lh(ψ̂, γ0, θ̂(ψ̂, γ0))

∂γ

]
√
T (γ̂ − γ0){1 + op(1)}

=

[
1√
T

∂Lh(ψ0, γ0, θ̂(ψ0, γ0))

∂γ
{1 + op(1)}

]
√
T (γ̂ − γ0){1 + op(1)}

=

[
1√
T

∂Lh(ψ0, γ0, θ0(ψ0, γ0))

∂γ
{1 + op(1)}{1 + op(1)}

]√
T (γ̂ − γ0){1 + op(1)}

is of order Op(1). In the same vein, we can show that the second term,

I2 = Lh(ψ̂, γ0, θ̂(ψ̂, γ0))− Lh(ψ0, γ0, θ̂(ψ0, γ0))

=

[
1√
T

∂Lh(ψ0, γ0, θ̂(ψ0, γ0))

∂ψ

]
√
T (ψ̂ − ψ0){1 + op(1)}

=

[
1√
T

∂Lh(ψ0, γ0, θ0(ψ0, γ0))

∂ψ
{1 + op(1)}

]√
T (ψ̂ − ψ0){1 + op(1)}

is of order Op(1). The term on the right hand side T−1/2∂Lh(ψ0, γ0, θ(ψ0, γ0))/∂ψ is of order

Op(1) since the first order derivative of the marginal likelihood T−1/2∂Lm(ψ0)/∂ψ and the first

order derivative of the full likelihood T−1/2∂Lm(ψ0)/∂ψ + T−1/2∂Lh(ψ0, γ0, θ(ψ0, γ0))/∂ψ are of

order Op(1). This implies that Lh(ψ̂, γ0, θ̂)− Lh(ψ0, γ0, θ̂) is of order Op(1).
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Furthermore, by Taylor expansion and the condition ‖θ̂ − θ0‖ = Op(1/
√
Th), the last term

I3 =
1

h

[√
h

T

∂Lh(ψ0, γ0, θ0)

∂θ

]
√
Th(θ̂ − θ0){1 + op(1)}

is of order Op(1/h) and dominates the other two terms. This completes the proof. �

Lemma 2 suggests that we can derive the asymptotic distribution of θ̂ without considering

the errors from the parametric estimation. The estimators of (ψ̂, γ̂) have little effect on the

estimation of θ̂ if the sample size T is large. This result is in line with the fact that the conver-

gence rate of the parametric part of the model is faster than that of the nonparametric component.

Proof of Theorem 3: Using Lemma 2 we can assume that ψ0 and γ0 are known for sim-

plicity. Define the kernel constants µ2 =
∫
z2k(z)dz, ν0 =

∫
k2(z)dz and ν2 =

∫
z2k2(z)dz.

Let Λt = γᵀ0Wt, `ct(θ(Λ)) = `ct(ψ0, γ0, θ), L(θ(Λ)) = 1
T

∑T
t=1 `ct(θ(Λ))kh(Λt − Λ), L′(θ(Λ)) =

1
T

∑T
t=1 `

′
ct(θ(Λ))kh(Λt − Λ) and L′′(θ(Λ)) = 1

T

∑T
t=1 `

′′
ct(θ(Λ))kh(Λt − Λ). For a fixed point Λ ly-

ing in the interior of the support AΛ, the normal equation for the local likelihood-based estimator

is given by L′(θ̂(Λ)) = 0. By a Taylor expansion, it can be written as

L′(θ0(Λ)) + L′′(θ0(Λ))(θ̂(Λ)− θ0(Λ)) + op(1/
√
Th) = 0,

which leads to

θ̂(Λ)− θ0(Λ) = −[L′′(θ0(Λ))]−1L′(θ0(Λ)) + op(1/
√
Th).

By the moment condition, we have

0 = E{`′ct(θ0(Λt))|Λt = Λ}

= E{`′ct(θ0(Λ) + rt)|Λt = Λ}

≈ E{`′ct(θ0(Λ))|Λt = Λ}+ rtE{`′′ct(θ0(Λ))|Λt = Λ}+ op(rt),

where rt = θ′0(Λ)(Λt−Λ)+1
2θ
′′
0(Λ)(Λt−Λ)2+op(Λt−Λ)2. By construction, we have E{`′ct(θ0(Λ))|Λt =

Λ} ≈ −rtE{`′′ct(θ0(Λ))|Λt = Λ}+ op(rt). Thus,

E{L′(θ0(Λ))|Λt = Λ} = − 1

T

T∑
t=1

rtE{`′′ct(θ0(Λ))|Λt = Λ}kh(Λt − Λ)

=
1

T
Σ(Λ)

T∑
t=1

rtkh(Λt − Λ)
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where Σ(Λ) = −E{`′′ct(θ0(Λ))|Λt = Λ}. Note that

E{L′′(θ0(Λ))|Λt = Λ} =
1

T

T∑
t=1

E{`′′ct(θ0(Λ))|Λt = Λ}kh(Λt − Λ)

= −f(Λ)Σ(Λ) + op(1).

It follows by a Taylor expansion and the Riemann sum approximation of an integral that the bias

term of θ̂(Λ) can be expressed as

E{θ̂(Λ)|Λt = Λ} − θ0(Λ)

= −[E{L′′(θ0(Λ))|Λt = Λ}]−1E{L′(θ0(Λ))|Λt = Λ}

≈ 1

f(Λ)

1

T

T∑
t=1

[
θ′0(Λ)(Λt − Λ) +

1

2
θ′′0(Λ)(Λt − Λ)2

]
kh(Λt − Λ)

≈ 1

f(Λ)

∫
θ′0(Λ)(Λt − Λ)f(Λt)kh(Λt − Λ)dΛt +

1

2f(Λ)

∫
θ′′0(Λ)(Λt − Λ)2f(Λt)kh(Λt − Λ)dΛt

=
h

f(Λ)

∫
θ′0(Λ)uf(Λ + uh)k(u)du+

h2

2f(Λ)

∫
θ′′0(Λ)u2f(Λ + uh)k(u)du

=
h2

f(Λ)
θ′0(Λ)f ′(Λ)µ2 +

h2

2f(Λ)
θ′′0(Λ)µ2 + op(h

2)

= h2B(Λ) + op(h
2),

where B(Λ) = 1
f(Λ)(θ′0(Λ)f ′(Λ)µ2 + 1

2θ
′′
0(Λ)µ2).

To find the expression for Var{L′(θ0(Λ))|Λt = Λ}, letQ = 1
T

∑T
t=1Qt, whereQt = `′ct(θ0(Λ))kh(Λt−

Λ). Note that Var(Q1) = ν0f(Λ)
h Φ(Λ) + op

(
1
h

)
with Φ(Λ) = E{`′ct(θ0(Λ))`′ct(θ0(Λ))ᵀ|Λt = Λ}.

By stationarity, we have

Var(Q) =
1

T
Var(Q1) +

1

T

T−1∑
s=1

(1− s/T )cov(Q1, Qs+1).

Define

J1 =

dT−1∑
s=1

|cov(Q1, Qs+1)| and J2 =

T−1∑
s=dT

|cov(Q1, Qs+1)|,

where dT satisfies dT → ∞ and dTh → 0. Following the same technology on pages 251-252 of

Fan and Gijbels (1996), we can show J1 = op(1/h) and J2 = op(1/h). It follows that

T−1∑
s=1

|cov(Q1, Qs+1)| = op(1/h) and Var(Q) =
ν0f(Λ)

Th
Φ(Λ).
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Therefore, the variance term is given by

Var{θ̂(Λ)|Λt = Λ}

= E{L′′(θ0(Λ))|Λt = Λ}−1Var{L′(θ0(Λ))|Λt = Λ}E{L′′(θ0(Λ))|Λt = Λ}−1

=
1

Thf(Λ)
ν0Σ(Λ)−1Φ(Λ)Σ(Λ)−1.

By using Assumption (A8), and the score function withQt = `′ct(θ0(Λ))kh(Λt−Λ), we establish

the asymptotic normality for θ̂(Λ) by Doob’s small-block and large-block technique, which is

similar to the proofs on pages 252-255 of Fan and Gijbels (1996). Details are omitted here. This

completes the proof.

�
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