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In this Appendix, we use Monte Carlo experiments to investigate the usefulness (in finite

samples) of the procedures proposed in Section 3.3 of the paper to detect Markov error-correction

(MEC) adjustment. These include tests for cointegration, parameter instability, neglected non-

linearity and Markov regime switching, as well as a model selection procedure based on the

Akaike information criterion (AIC).

1. Experimental Design and Simulation

The data-generating mechanism used in our simulation experiments is the bivariate system

yt + αxt = zt, zt = {φ0 + (φ1 − φ0)st}zt−1 + ε1t, (A.1)

yt + βxt = ut, ut = ut−1 + ε2t, (A.2)"
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where {st} is an ergodic Markov chain on {0, 1}, independent of {(ε1t, ε2t)}, with transition
probabilities p00 = Pr{st = 0|st−1 = 0} and p11 = Pr{st = 1|st−1 = 1}. The experiments are a
full factorial design of:

α = −2, β ∈ {−3, 0}, φ0 ∈ {0, 0.7}, φ1 = 1, ρ ∈ {0,−0.5},

(p00, p11) ∈ {(0.9, 0.9), (0.98, 0.98), (0.98, 0.9), (0.9, 0.98), (0.5, 0.5)}.

The first two pairs of transition probabilities, (0.9, 0.9) and (0.98, 0.98), allow for symmetry in

the persistence of the two regimes, the expected duration of each regime being much longer when

p00 = p11 = 0.98. The probabilities (p00, p11) = (0.98, 0.9), on the other hand, imply that the

regime that corresponds to st = 1 is considerably less persistent than the regime that corresponds

to st = 0; the opposite is true when (p00, p11) = (0.9, 0.98). Finally, the regime indicators {st}
are uncorrelated when (p00, p11) = (0.5, 0.5). Notice that setting β = 0 implies that yt does

not react to deviations from long-run equilibrium since an error-correction mechanism is only

present in the equation for xt.

In all the experiments, 50+T pseudo-data points for (yt, xt) are generated according to (A.1)—

(A.3), with T ∈ {50, 100, 200, 500}, by setting z0 = u0 = 0. However, in order to attenuate the

effect of the initial values, only the last T pseudo-data points are used for estimation and testing

purposes. Unless otherwise stated, the number of Monte Carlo replications per experiment is

2,500.
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2. Cointegration Tests

In our analysis below, we focus on the residual-based ADF , bZα and bZt cointegration tests

discussed in Phillips and Ouliaris (1990). In our implementation of the tests, the order of

the AR(k) model on which the ADF test is based is selected by minimizing the AIC over

k ∈ {1, 2, . . . , b4(T/100)1/4c + 1}, where b·c denotes the greatest-integer function. The bZα andbZt tests are used in conjunction with a prewhitened kernel estimator for the long-run innovation

variance based on the Parzen kernel function and an automatic plug-in bandwidth (see Andrews

and Monahan, 1992). For all three tests, a constant term is included in the test regressions.

We also consider cointegration tests which are based on vector autoregressive models for

{(yt, xt)}. These include Stock and Watson’s (1988) minimum-eigenvalue test based on their
statistic qµc (2, 1) (denoted by SW ) and Johansen’s (1991) trace and maximal-eigenvalue likeli-

hood ratio (LR) tests (denoted by LRtrace and LRmax, respectively). For the latter, the order

k (say) of the vector autoregressive model used is determined by minimizing the AIC over

k ∈ {1, 2, . . . , b4(T/100)1/4c+ 1}. The SW test is based on a corrected first-order sample auto-

correlation matrix for (yt, xt)0, where the correction term is estimated nonparametrically using

a prewhitened kernel estimator, the Parzen kernel function and an automatic plug-in bandwidth

(Andrews and Monahan, 1992). For both types of tests, a constant is included unrestrictedly in

the vector autoregressive equations.

Table 1A gives Monte Carlo estimates of the Type-I error probability of 0.05-level cointegra-

tion tests in the case where β = 0 and ρ = 0 (the results for β = −3 are very similar and are
therefore omitted in order to save space).1 Most of the tests have empirical rejection probabili-

ties that are close to the correct rate, the exception being the Johansen tests. The latter tend

to be somewhat liberal when the sample size is small, and this must be borne in mind when

interpreting results obtained under cointegration.

The empirical rejection probabilities of the tests when cointegration with MEC holds are

reported in Table 1B.2 It is evident that, although the equilibrium error follows a nonstationary

path occasionally, the tests are generally quite powerful to detect the presence of cointegration.

This is especially true when the state indicators {st} are not correlated, a finding which is not
perhaps surprising since the frequent state transitions that take place when p00 + p11 = 1 tend

to make the equilibrium error look very much like white noise with large variance. For data-

generating processes with p00 + p11 > 1, a comparison across different values of the transition

probabilities reveals that the probability of correctly detecting cointegration is higher: (a) the

more persistent the regime where short-run disequilibrium adjustment takes place is relative to

the regime where no such adjustment occurs, and (b) the more observations correspond to the

error-correcting regime st = 0 (as is indeed the case when p00 = 0.98 and p11 = 0.9). Also,

for any given pair of transition probabilities, the power of the tests rises as the strength of
1The results for tests at the 0.01 and 0.10 level of significance are qualitatively similar and do not affect the

conclusions about the relative merits of different tests.
2 In order to reflect empirical practice, all power calculations are done using critical values from the asymptotic

null ditributions of the test statistics.
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disequilibrium adjustment in the regime corresponding to st = 0 increases (or, equivalently,

as the autoregressive coefficient φ0 decreases). This makes it difficult for the tests to detect

cointegration with MEC when the equilibrium error is relatively persistent and the sample size

is small.

Turning to the individual tests, the bZα and bZt tests always have higher empirical rejection

probabilities than the ADF test, presumably because the nonparametric autocorrelation correc-

tions that the former two tests employ are more successful in accounting for Markov dynamics

than the autoregressive approximations on which the ADF test is based.3 Among system-wide

tests, the SW test is generally more powerful than the LRtrace and LRmax tests, although in

most cases the power differences are not very substantial.

Repeating the experiments with ρ = −0.5 revealed that the correlation between the inno-
vations of the equilibrium error and the stochastic trend does not contribute to any significant

changes in the power of the tests in large samples. For small and moderately-sized samples, the

ADF , bZα and bZt tests suffer a small decrease in power relative to the case with ρ = 0, while

the opposite is true for the LRtrace and LRmax tests.

In summary, our analysis shows that conventional cointegration tests based on the assump-

tion of a linear adjustment process are capable of detecting the presence of a equilibrium rela-

tionship between MEC time series.

3. Tests for Parameter Instability

The tests for parameter stability we consider are based on the following statistics: (a) Ny-

blom’s (1989) L statistic (modified as in Hansen (1992a) to achieve robustness with respect to

heteroskedasticity), which provides a locally most powerful test for the null hypothesis of para-

meter stability against the alternative of martingale parameter variation; (b) functionals of the

sequence of LR statistics which test the null hypothesis of parameter stability against the alter-

native of an one-time break at all possible break-points in the sample; following Andrews (1993)

and Andrews and Ploberger (1994), the statistics considered are

AvgLR =

Z ω2

ω1

LR(ω)dω, ExpLR = ln

½Z ω2

ω1

exp[12LR(ω)]dω

¾
,

SupLR = sup
ω∈(ω1, ω2)

LR(ω),

where LR(ω) denotes the LR statistic for testing for a change at date ωT , ω ∈ (0, 1). The tests
are implemented with ω0 = 1− ω1 = 0.15.

For computational convenience, we set β = 0 in the data-generating process so that only xt
responds to deviations from the long-run equilibrium relationship. Further, in order to reflect

empirical practice, we treat the cointegrating vector as unknown and estimate it from the data.

Thus, in each Monte Carlo replication, we proceed according to the following two-step procedure.
3These findings are similar to the results of van Dijk and Franses (1996) and Balke and Fomby (1997), who

found the bZα and bZt tests to be more powerful than the ADF test in the presence of threshold cointegration.
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First, we obtain an estimate (1, bα) of the cointegrating vector (1, α) by means of the fully-
modified least squares method of Phillips and Hansen (1990); long-run covariance matrices are

estimated as in Andrews and Monahan (1992), using a prewhitened kernel estimator, the Parzen

kernel function and a data-dependent automatic bandwidth. Second, we test for parameter

instability in: (a) an AR(1) model for bzt = yt + bαxt:
Model M1: bzt = b0 + b1bzt−1 + v∗1t;

(b) an error-correction model for xt:

Model M2: ∆xt = c0 + c1bzt−1 + v∗2t.

The top panel in Tables 2A—2B gives Monte Carlo estimates of the empirical rejection proba-

bilities of 0.05-level tests for modelsM1 andM2 when ρ = 0 and the null hypothesis of parameter

constancy is true (i.e. φ1 = φ0, |φ0| < 1).4 Tests in the error-correction model M2 generally

have rejection probabilities that are not very different from the 0.05 nominal value. This is not

the case in model M1 where all tests tend to be somewhat liberal even for relatively large sample

sizes.

Turning to the rejection probabilities of the tests in the presence of MEC adjustment, also

shown in Tables 2A—2B, it is obvious that the performance of the tests is disappointing when

p00 = p11 = 0.5. In this case, there are frequent transitions between the two regimes, and the

power of the tests suffers as a result. Fortunately, however, matters improve considerably when

p00+p11 > 1. In modelM1, tests other than L are capable of detecting parameter non-constancy,

especially when the change in the autoregressive parameter is relatively large (i.e., φ0 = 0). The

rejection probabilities of the tests are lower in the error-correction model M2, presumably due to

the fact that the changes in the coefficient of the error-correction mechanism that are implied by

our data-generating process are small (this coefficient switches between 0 and 0.5 when φ0 = 0

and between 0 and 0.15 when φ0 = 0.7). Finally, the ExpLR and SupLR tests are consistently

more successful than the AvgLR and L tests. The latter is very weak compared to the other

tests, which is not perhaps surprising since the test is designed for situations where there is a

relatively constant likelihood of parameter variation throughout the sample.

4. Tests for Neglected Nonlinearity

Further useful information about the adequacy or otherwise of a linear adjustment process

may be obtained from application of tests for neglected nonlinearity in the relevant error-

correction model or in an autoregressive model for the equilibrium error. We now investigate

the properties of such tests in the context of the linear models M1 (AR(1) model for bzt) and
M2 (error-correction model for xt) considered in the experiments of the previous section. Each

of these models is tested for neglected nonlinearity using the following tests: (i) the modified

regression equation specification error test (RESET ) of Thursby and Schmidt (1977), with pow-

ers of regressors up to 4; (ii) the BDS test of Brock et al. (1996), with embedding dimension
4Results for ρ = −0.5 are very similar to those obtained with ρ = 0, and are not, therefore, reported.

4



equal to 2 and metric bound equal to the standard deviation of the estimated residuals; (iii) the

‘WHITE3’ dynamic information matrix test discussed in Lee et al. (1993) (denoted by WHT );

(iv) the ‘NEURAL2’ neural network test of Lee et al. (1993), based on a logistic squashing

function and the second and third largest principal components of 20 randomly generated unit

signals (denoted by NNT ).

Tables 3A—3B report the empirical rejection probabilities of 0.05-level nonlinearity tests for

data-generating processes identical to those considered in subsection 3.2, with β = ρ = 0.5

With the exception of the BDS test, nonlinearity tests reject at the correct rate when the null

hypothesis of linearity is true (φ1 = φ0), even for the smaller sample sizes. In the presence

of Markov cointegration, tests for neglected nonlinearity in model M1 perform poorly when

p00 = p11 = 0.5, with only the BDS test being capable of rejecting the linear model (although

the rejection probabilities for the two smaller sample sizes is misleading since the test tends to

over-reject under the null). Allowing the chain {st} to be fairly persistent leads to a considerable
improvement in the performance of the tests, especially when T > 200. In these cases, the

RESET and WHT tests perform best overall but test power remains low for small differences

between φ1 and φ0.

The overall picture is the same for tests applied to model M2. Here, however, test rejection

frequencies are generally lower than those obtained for model M1, presumably because Markov

nonlinearity is less prominent in the error-correction model as a result of the shifts in coefficients

being relatively small.

5. A Test for Markov Switching

The previous two sections have demonstrated that tests for parameter instability and ne-

glected nonlinearity can provide useful insights into the validity or otherwise of the assumption

of a linear adjustment process. It should be appreciated, however, that such tests are not de-

signed to test departures from linearity or stability in the direction of Markov switching models,

and they are reasonably powerful against several types of nonlinearity and parameter noncon-

stancy. Thus, in the absence of additional information, rejection of the hypothesis of stability

or linearity on the basis of these tests cannot be necessarily accepted as evidence in favour of

Markov switching behaviour.

In the face of these difficulties, it is clearly desirable to complement parameter instability

and nonlinearity tests with procedures which directly test the hypothesis of linear adjustment

towards equilibrium against a Markov alternative. Unfortunately, this testing problem is non-

standard in that the transition probabilities are unidentified and scores are identically zero under

the null hypothesis of linearity, thus violating conventional regularity conditions for likelihood-

based inference. Hansen (1992b) proposed a general theory for testing under such non-standard

conditions. By viewing the likelihood function as an empirical process of the unknown para-

meters, a bound for the asymptotic distribution of a suitably standardized LR statistic can be

obtained. This asymptotic distribution is generally non-standard, but an approximation to it
5Very similar results were obtained with ρ = −0.5.
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may be obtained via simulation. The difficulty with this method is that it involves evaluation

of the likelihood function across a grid of different values for the transition probabilities and for

each state-dependent parameter and hence is extremely intensive computationally.

The data-generating process for the simulations is similar to that used in the previous two

sections, although, due to the exceptionally high computational cost of the experiments, only

the following parameter values and sample sizes are considered:

α = −2, β = 0, φ0 ∈ {0, 0.7}, φ1 = 1, ρ = 0,

(p00, p11) ∈ {(0.5, 0.5), (0.9, 0.9), (0.98, 0.9)}, T ∈ {50, 100, 200}.

For each design point, we test model M1 (single-state AR(1) model for bzt) and model M2 (single-
state error-correction model for xt) against corresponding Markov alternatives (i.e. two-state

Markov switching models), using Hansen’s (1992b) standardized LR statistic. In both cases,

a constant is also included in the models but, in order to reduce the computation times, it is

assumed to be state-independent. For the calculations, we use for grid for the state-dependent

coefficients the range [0.01, 1.01] in steps of 0.1 (11 gridpoints), while the range [0.50, 0.95] in

steps of 0.05 (10 gridpoints) is used for the transition probabilities. The asymptotic p-values of

the tests are calculated according to the method described in Hansen (1996), using 1,000 random

draws from the relevant limiting Gaussian processes and bandwidth parameterM ∈ {0, 1, . . . , 4}.
Table 4 records the empirical rejection probabilities of the tests (calculated as the fraction

of 500 Monte Carlo trials in which the test p-value did not exceed 0.05). It is clear that, when

testing the AR(1) model for bzt, the likelihood ratio test is fairly powerful if the Markov chain
is persistent and φ0 = 0. However, the test has virtually no power to detect Markov switching

behaviour when the difference between φ1 and φ0 is small (the problem is, of course, exacerbated

by the fact that our test procedure uses asymptotic p-values which are only an upper bound for

the true p-values and hence the test tends to be conservative). A similar picture emerges when

testing the error-correction model for xt, in which case the rejection probabilities are lower

than those obtained for model M1 (due to the fact that the changes in the coefficient of the

error-correction mechanism that are implied by our data-generating process are small). Finally,

as with parameter instability tests, the Hansen test is more successful in detecting Markov

switching the more autocorrelated the hidden regime indicators are.

6. A Model Selection Approach

An alternative way of distinguishing between cointegration models with linear adjustment

and cointegration models with MEC adjustment is by comparing the rival models on the basis

of a complexity-penalized likelihood criterion (e.g., the AIC). As Granger et al. (1995) point

out, such a method is arguably more appropriate for model selection than procedures based on

formal hypothesis testing, partly because, unlike testing, it does not favour unfairly the model

chosen to be the null hypothesis. This last point is particularly important in the case of MEC

adjustment since all the procedures considered so far have a linear cointegration model as a null
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hypothesis. To make matters worse, one of the tests (namely Hansen’s test) is conservative by

construction, thus further favouring linear models.

Here, we investigate the finite-sample performance of a selection procedure based on the

popular AIC under model (A.1)—(A.3) with β = 0. In each Monte Carlo replication, we calculate

the value of the AIC for the linear models M1 and M2 (which include a constant) and the

corresponding Markov models (with switching intercept and slope).

The empirical probabilities of correctly selecting the Markov two-state models instead of the

corresponding single-state specifications are reported in Tables 5A—5B. In the case of autore-

gressive models for bzt, the AIC performs extremely well when φ0 = 0 and T > 100. For the

error-correction model for∆xt, roughly the same picture emerges, although the AIC is somewhat

less successful in selecting the right model, especially when p00 + p11 = 1. As with all previous

procedures, difficulties are encountered when φ0 = 0.7, but even in these cases one is more likely

to arrive at the correct conclusion about the presence of MEC adjustment using the AIC than

the nonlinearity tests of the type discussed in the last two subsections. There appear, therefore,

to be good reasons for using a model selection procedure as a further means of establishing the

presence or otherwise of Markov-type nonlinearity in the adjustment process.

7. Conclusion

On the basis of our simulation results, we recommend starting with the bZα, bZt and SW

cointegration tests, which have high power to detect the presence of a long-run relationship

among cointegrated MEC time series. In the second step, the ExpLR and SupLR tests for

parameter instability can be useful in revealing the invalidity of the assumption of a continuous

and constant-strength adjustment process. These could be supplemented with the RESET and

WHT tests for neglected nonlinearity both of which have respectable power against Markov-

type alternatives. Better still, if the high computational cost is acceptable, Hansen’s (1992b)

procedure can be used to directly test the one-state linear model of interest against the corre-

sponding Markov model. Of course, since there exist situations in which all these tests tend to

have low power, it seems prudent to anyhow fit both linear and Markov switching models to the

data. Then, one of the competing models may be selected by using the AIC criterion, which

was found to work well in our simulations.
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Table 1A. Rejection Probabilities (%) of Cointegration Tests

(φ0 = φ1 = 1)

T ADF bZα
bZt SW LRtrace LRmax

50 4.84 6.44 7.80 5.04 9.80 9.76

100 4.28 6.64 6.16 4.88 7.32 7.36

200 4.76 6.48 5.96 5.68 7.20 7.72

500 5.40 5.48 5.20 5.08 6.28 5.72

Table 1B. Rejection Probabilities (%) of Cointegration Tests (φ1 = 1)

T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

p00 = 0.5, p11 = 0.5

ADF 44.60 8.68 92.36 25.24 99.76 81.40 100.0 100.0bZα 75.60 15.16 99.32 42.64 100.0 93.00 100.0 100.0bZt 78.60 16.08 99.12 35.84 100.0 89.56 100.0 100.0

SW 83.44 12.32 99.64 40.40 100.0 93.24 100.0 100.0

LRtrace 56.24 16.72 94.72 30.00 99.96 74.68 100.0 100.0

LRmax 56.92 14.64 95.76 27.60 99.96 77.80 100.0 100.0

p00 = 0.9, p11 = 0.9

ADF 16.40 7.36 33.52 15.24 60.36 40.76 97.64 92.56bZα 34.24 11.48 56.28 26.20 79.36 50.76 99.24 95.52bZt 38.00 12.32 55.16 21.92 78.00 46.36 99.00 93.64

SW 37.68 9.56 58.68 23.44 83.60 52.16 99.64 96.80

LRtrace 23.08 14.00 39.28 21.00 65.80 41.04 97.72 89.28

LRmax 21.48 12.20 38.56 18.68 66.20 39.88 98.48 90.64

p00 = 0.98, p11 = 0.98

ADF 13.24 7.64 15.76 12.20 20.32 21.20 36.48 39.32bZα 27.40 11.32 33.28 20.16 37.92 27.72 56.08 46.04bZt 30.36 12.24 32.80 16.96 37.64 25.28 53.68 43.04

SW 28.60 9.32 34.28 18.68 41.40 28.60 59.48 48.08

LRtrace 17.40 12.52 21.84 15.48 26.80 22.84 42.28 37.36

LRmax 17.64 12.12 21.00 14.72 25.32 21.84 42.68 37.12
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Table 1C. Rejection Probabilities (%) of Cointegration Tests (φ1 = 1)

T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

p00 = 0.98, p11 = 0.9

ADF 21.32 8.52 36.72 22.48 61.12 59.88 94.80 96.04bZα 44.16 15.48 67.52 38.56 87.16 70.92 99.32 97.84bZt 47.92 16.68 67.60 32.92 87.16 66.84 99.12 97.28

SW 46.76 13.28 70.08 36.44 89.16 71.80 99.56 98.24

LRtrace 26.56 14.84 45.44 26.76 70.12 57.52 96.20 94.92

LRmax 25.80 12.72 44.84 24.48 71.20 57.56 96.44 95.40

p00 = 0.9, p11 = 0.98

ADF 8.72 5.56 9.12 6.76 12.28 9.56 35.16 19.88bZα 16.00 7.96 18.84 10.04 21.84 11.96 45.24 23.16bZt 19.00 9.48 18.04 9.40 20.76 11.12 41.20 20.20

SW 16.92 6.60 19.40 8.84 24.48 11.48 52.04 24.20

LRtrace 15.00 11.96 15.28 11.04 18.24 13.32 37.72 20.56

LRmax 14.12 11.72 12.88 9.32 14.76 11.04 36.88 18.40
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Table 2A. Rejection Probabilities (%) of Parameter Instability Tests: Model M1

T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

φ1 = φ0
L 6.32 2.24 7.64 3.64 9.72 4.64 12.32 6.40

AvgLR 7.84 8.40 8.88 8.60 10.64 7.60 12.80 8.80

ExpLR 8.96 11.76 9.76 9.80 11.48 8.32 12.76 8.32

SupLR 5.92 9.04 7.32 8.92 9.20 7.72 11.40 7.76

φ1 = 1, p00 = 0.5, p11 = 0.5

L 2.60 2.36 4.40 1.80 5.12 2.68 7.20 5.44

AvgLR 7.72 12.84 12.24 11.48 15.16 10.08 19.04 10.64

ExpLR 14.48 17.76 15.88 14.52 17.56 11.52 22.24 10.76

SupLR 13.56 16.08 17.04 14.84 18.24 12.80 24.60 11.08

φ1 = 1, p00 = 0.9, p11 = 0.9

L 8.12 2.64 10.60 2.80 15.00 3.68 21.48 7.68

AvgLR 30.12 17.92 40.04 16.64 50.60 17.28 61.32 23.48

ExpLR 45.44 26.20 56.72 23.68 65.60 25.44 75.92 30.80

SupLR 40.84 23.08 55.28 24.28 67.96 29.16 79.64 37.48

φ1 = 1, p00 = 0.98, p11 = 0.98

L 13.00 3.16 21.96 5.12 26.84 7.60 28.76 12.44

AvgLR 47.00 23.72 63.16 30.04 68.60 38.20 70.48 46.16

ExpLR 58.68 33.28 72.68 39.32 79.12 48.96 82.92 59.76

SupLR 53.04 29.08 70.20 37.20 79.20 49.76 84.76 65.00

φ1 = 1, p00 = 0.98, p11 = 0.9

L 14.12 2.96 25.68 3.68 39.64 8.72 58.68 23.36

AvgLR 41.76 19.52 66.12 22.04 80.32 31.88 92.28 48.28

ExpLR 54.72 26.96 75.24 27.92 87.56 35.76 96.36 56.16

SupLR 49.08 24.04 72.52 27.64 88.16 34.72 97.00 57.72

φ1 = 1, p00 = 0.9, p11 = 0.98

L 7.64 3.56 6.96 3.44 6.88 2.80 5.40 2.16

AvgLR 33.64 23.96 38.28 24.80 37.40 23.44 35.08 19.32

ExpLR 51.28 35.40 56.04 36.72 55.96 37.24 56.04 35.64

SupLR 46.56 31.92 55.44 37.76 58.64 42.64 62.04 44.08
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Table 2B. Rejection Probabilities (%) of Parameter Instability Tests: Model M2

T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

φ1 = φ0
L 4.16 2.64 5.56 3.92 6.52 3.80 6.76 4.88

AvgLR 6.44 6.48 6.68 6.16 6.60 5.40 6.64 5.28

ExpLR 7.48 7.72 6.64 6.40 6.08 5.96 6.08 5.04

SupLR 5.04 5.56 4.68 5.12 4.60 5.12 5.12 4.56

φ1 = 1, p00 = 0.5, p11 = 0.5

L 2.00 2.72 3.28 2.88 3.36 2.76 4.16 4.32

AvgLR 5.92 7.80 7.08 6.64 8.80 6.28 10.56 6.28

ExpLR 8.16 9.32 8.84 7.32 10.12 6.92 12.00 6.36

SupLR 7.96 7.64 8.48 6.60 10.08 6.96 13.48 6.08

φ1 = 1, p00 = 0.9, p11 = 0.9

L 3.76 2.80 6.56 2.80 8.48 3.08 12.44 4.76

AvgLR 15.96 10.20 21.60 8.60 29.52 8.48 41.00 11.56

ExpLR 26.40 13.80 34.44 11.00 42.88 11.08 55.56 14.00

SupLR 23.32 11.40 33.32 10.28 45.44 12.88 59.96 17.32

φ1 = 1, p00 = 0.98, p11 = 0.98

L 7.52 3.36 11.96 3.76 14.92 3.60 17.68 6.16

AvgLR 25.28 13.76 38.00 12.64 43.52 15.24 50.60 21.32

ExpLR 37.44 19.28 49.80 18.64 56.96 21.52 65.32 30.64

SupLR 34.44 15.60 48.08 18.04 58.16 22.68 69.16 35.52

φ1 = 1, p00 = 0.98, p11 = 0.9

L 6.96 2.80 14.52 3.04 23.60 4.48 42.64 11.92

AvgLR 23.24 9.52 39.64 10.64 59.28 13.04 79.56 25.48

ExpLR 34.08 13.40 49.92 13.24 68.44 15.68 88.00 28.64

SupLR 29.12 11.36 46.40 12.16 69.08 15.68 89.72 29.08

φ1 = 1, p00 = 0.9, p11 = 0.98

L 3.88 3.72 3.80 2.48 3.08 2.64 2.96 2.40

AvgLR 16.84 12.68 19.16 12.44 18.48 10.40 15.92 7.52

ExpLR 31.60 20.08 34.88 18.84 35.72 17.16 31.84 13.72

SupLR 29.24 17.76 35.00 18.88 38.48 20.00 39.80 20.52
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Table 3A. Rejection Probabilities (%) of Nonlinearity Tests: Model M1

T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

φ1 = φ0
RESET 4.44 3.28 3.80 3.92 4.48 3.28 4.76 3.24

WHT 3.84 4.80 4.48 4.80 4.08 3.20 5.00 4.60

BDS 18.20 17.48 10.84 10.20 7.64 7.76 5.80 5.52

NNT 4.16 4.08 3.68 4.20 4.32 4.52 4.40 4.72

φ1 = 1, p00 = 0.5, p11 = 0.5

RESET 18.24 5.40 26.20 5.92 32.16 7.60 43.48 8.56

WHT 13.56 6.44 20.04 6.52 23.56 6.76 31.00 7.76

BDS 33.56 16.60 50.32 10.96 79.44 8.76 99.24 10.52

NNT 11.08 3.72 13.64 4.56 16.12 5.20 20.96 6.12

φ1 = 1, p00 = 0.9, p11 = 0.9

RESET 23.56 5.60 37.76 7.20 53.56 10.08 75.96 20.44

WHT 16.52 6.12 31.04 7.20 57.48 10.84 92.52 24.72

BDS 26.20 18.28 33.28 11.44 53.76 9.76 87.40 10.00

NNT 11.20 3.96 19.96 4.40 40.32 6.28 81.00 25.64

φ1 = 1, p00 = 0.98, p11 = 0.98

RESET 24.48 7.92 41.96 11.24 54.68 18.92 68.60 35.60

WHT 20.32 6.88 41.52 7.84 69.36 14.12 91.92 35.68

BDS 25.36 18.88 30.20 11.80 49.16 11.28 82.48 12.76

NNT 12.20 5.04 24.88 6.72 42.28 11.96 63.12 34.40

φ1 = 1, p00 = 0.98, p11 = 0.9

RESET 24.64 5.52 48.92 9.24 77.12 19.08 97.40 50.12

WHT 19.56 6.00 50.48 7.12 86.88 13.08 99.92 36.36

BDS 24.64 17.96 36.60 11.52 69.72 8.92 99.08 9.68

NNT 12.84 4.12 29.48 5.88 63.88 14.08 97.04 55.16

φ1 = 1, p00 = 0.9, p11 = 0.98

RESET 21.32 6.92 30.40 9.16 36.44 10.04 43.08 11.56

WHT 16.96 8.36 24.04 9.32 34.72 14.72 57.68 31.00

BDS 27.00 19.68 25.96 13.28 31.40 12.12 49.68 14.84

NNT 9.80 3.88 15.64 5.40 19.52 5.24 29.20 7.20
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Table 3B. Rejection Probabilities (%) of Nonlinearity Tests: Model M2

T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

φ1 = φ0
RESET 4.20 3.56 4.04 4.48 4.28 4.92 4.20 3.76

WHT 5.16 4.12 4.68 3.44 5.20 4.96 5.08 4.56

BDS 19.92 17.68 10.48 11.60 7.84 7.76 5.92 5.84

NNT 4.00 4.24 3.80 4.96 4.76 5.20 4.40 4.36

φ1 = 1, p00 = 0.5, p11 = 0.5

RESET 12.28 5.08 17.36 5.52 21.36 6.20 29.16 7.84

WHT 9.60 4.08 11.92 4.20 13.96 5.52 19.00 5.76

BDS 19.84 17.40 16.04 12.00 23.16 7.80 45.80 6.36

NNT 9.36 4.16 10.68 4.68 11.48 5.08 15.16 5.40

φ1 = 1, p00 = 0.9, p11 = 0.9

RESET 17.00 6.40 26.28 7.00 40.16 7.44 61.12 12.88

WHT 11.36 4.56 17.88 4.76 32.72 7.24 66.52 12.16

BDS 20.76 18.44 15.84 11.20 19.28 8.32 30.20 6.48

NNT 8.72 5.12 12.20 4.68 26.72 5.04 69.08 14.24

φ1 = 1, p00 = 0.98, p11 = 0.98

RESET 19.00 6.48 29.68 8.12 42.20 11.40 58.84 21.40

WHT 13.60 6.24 24.36 6.92 50.40 10.56 84.08 19.60

BDS 22.52 18.56 18.68 12.64 23.68 10.44 40.68 9.04

NNT 8.48 4.96 16.68 5.44 29.96 7.96 52.28 20.32

φ1 = 1, p00 = 0.98, p11 = 0.9

RESET 18.60 5.56 35.20 6.92 61.00 10.28 93.68 30.04

WHT 12.92 4.48 24.96 4.76 56.56 7.44 94.36 13.92

BDS 19.84 18.00 17.20 11.00 23.48 8.48 51.16 6.96

NNT 9.28 3.88 19.16 5.24 48.40 8.04 93.28 32.96

φ1 = 1, p00 = 0.9, p11 = 0.98

RESET 18.08 7.96 23.48 8.60 29.12 8.20 34.92 9.80

WHT 12.28 6.68 18.56 8.24 25.52 12.16 39.24 19.64

BDS 22.32 18.32 19.60 13.88 16.32 10.84 19.60 10.28

NNT 8.00 4.24 9.28 4.56 12.24 4.56 19.40 6.68
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Table 4A. Rejection Probabilities (%) of Hansen’s Test: Model for bzt (φ1 = 1)
T = 50 T = 100 T = 200

φ0 0.0 0.7 0.0 0.7 0.0 0.7

p00 = 0.5, p11 = 0.5

M = 0 11.20 0.40 26.00 0.80 69.40 1.20

M = 1 11.40 0.60 26.80 0.80 69.20 1.60

M = 2 12.60 0.80 28.40 0.80 69.40 1.40

M = 3 14.20 1.20 29.40 1.00 69.20 1.20

M = 4 14.60 1.20 29.60 1.00 69.20 1.40

p00 = 0.9, p11 = 0.9

M = 0 16.40 1.80 50.20 2.00 82.80 6.60

M = 1 16.00 1.40 49.20 1.80 82.40 5.00

M = 2 16.20 1.20 47.00 1.40 80.60 3.80

M = 3 15.80 1.40 45.20 1.20 80.00 3.20

M = 4 15.80 1.00 45.00 1.20 79.40 3.00

p00 = 0.98, p11 = 0.9

M = 0 19.40 0.60 52.00 2.40 87.80 10.60

M = 1 18.40 0.60 50.20 2.00 86.40 9.40

M = 2 17.60 0.60 46.20 1.80 85.20 8.20

M = 3 17.00 0.60 44.60 1.80 85.00 7.60

M = 4 16.60 0.60 42.80 1.80 83.80 7.00
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Table 4B. Rejection Probabilities (%) of Hansen’s Test: Model for ∆xt (φ1 = 1)

T = 50 T = 100 T = 200

φ0 0.0 0.7 0.0 0.7 0.0 0.7

p00 = 0.5, p11 = 0.5

M = 0 5.20 1.00 6.60 0.40 20.00 0.60

M = 1 5.40 1.40 6.60 0.40 21.20 0.70

M = 2 5.60 1.40 7.80 0.60 21.20 0.80

M = 3 6.00 1.80 8.00 0.60 21.80 0.80

M = 4 6.80 1.60 9.20 0.60 22.40 0.60

p00 = 0.9, p11 = 0.9

M = 0 13.20 1.00 23.40 0.40 45.40 1.20

M = 1 13.00 0.80 23.00 0.20 44.40 1.00

M = 2 12.60 0.80 22.60 0.20 43.80 0.80

M = 3 12.40 1.20 21.60 0.20 43.00 0.60

M = 4 12.20 1.20 20.80 0.20 43.20 0.60

p00 = 0.98, p11 = 0.9

M = 0 10.60 0.60 22.00 0.80 59.80 2.00

M = 1 10.40 0.60 20.80 0.80 58.60 2.00

M = 2 10.60 0.60 20.20 0.80 57.00 1.40

M = 3 11.00 0.60 19.00 0.80 54.80 1.20

M = 4 10.80 0.60 18.00 1.00 53.60 1.00
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Table 5A. Selection Probabilities (%): Model for bzt (φ1 = 1)
T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

p00 = 0.5, p11 = 0.5

48.68 21.36 69.64 22.80 92.12 26.24 100.0 42.68

p00 = 0.9, p11 = 0.9

57.72 23.68 83.48 28.16 98.00 42.48 100.0 75.28

p00 = 0.98, p11 = 0.98

57.16 22.40 77.96 27.76 89.16 42.36 96.88 74.60

p00 = 0.98, p11 = 0.9

55.88 21.84 83.60 26.84 98.12 43.56 100.0 79.60

p00 = 0.9, p11 = 0.98

58.12 26.04 77.52 32.24 88.32 44.04 97.80 73.04

Table 5B. Selection Probabilities (%): Model for ∆xt (φ1 = 1)

T = 50 T = 100 T = 200 T = 500

φ0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7

p00 = 0.5, p11 = 0.5

31.36 16.56 42.84 17.24 65.64 19.08 95.32 23.84

p00 = 0.9, p11 = 0.9

41.64 17.24 61.64 16.52 88.00 23.24 99.64 40.08

p00 = 0.98, p11 = 0.98

45.80 17.24 63.16 19.44 79.44 26.80 91.28 48.88

p00 = 0.98, p11 = 0.9

39.64 15.72 60.60 16.20 89.68 21.84 99.80 45.96

p00 = 0.9, p11 = 0.98

51.32 21.28 66.88 26.04 81.44 32.52 94.72 53.00
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