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1 Data Sources and the Interpolation Procedure

The variables used in this paper are Y: Real GDP; CPI: Consumer price
index; EQ: Equity price index; E: Exchange rate; RS: Short-term interest
rate; RF: Long-term interest rate; and P°: Oil price index.

A.1. Real GDP

The source of all 33 countries, except Singapore, is the IMF’s Interna-
tional Financial Statistics (IFS) GDP series in 1995 constant prices, except
Australia (2001/02), Norway (2001), United Kingdom (2000) and United
States (2000). France, Germany, Italy, Japan, South Africa, Spain, Nether-
lands, Switzerland, Australia, New Zealand, Mexico, United Kingdom and
United States are all from series br, and the remaining countries are from se-
ries bp. Where recent data were not available, the IF'S series were completed
with growth rates derived from series provided by Global Insight. The data
source for Singapore was Datastream.

Where quarterly data were not available (i.e. for Argentina, Belgium,
Brazil, Chile, China India, Indonesia, Malaysia, Mexico, Philippines, Saudi
Arabia, Thailand and Turkey), quarterly series were interpolated linearly
from the annual series (see A.7). Interpolated series were used only during
the periods 1981-1992 for Argentina, 1979 for Belgium, 1979-1989 for Brazil,
1979 for Chile, 1979-1996 for India, 1979-1982 for Indonesia, 1979-1987 for
Malaysia, 1979 for Mexico, 1979-1980 for the Philippines, 1979-1992 for
Thailand and 1979-1986 for Turkey. Quarterly output series were available
for the subsequent periods.

For the period before the German unification, in 1990Q4, West German
growth rates were used.

The data for Argentina, Austria, Belgium, Brazil, Chile, Finland, India,
Indonesia, Korea, Malaysia, Mexico, Norway, Peru, Philippines, Sweden,
Thailand and Turkey were seasonally adjusted. Seasonal adjustment was
performed with EViews, using the U.S. Census Bureau’s X12 program (for
further details, see U.S. Census Bureau, 2000).

A.2. Consumer Price Indices

The data source for all countries was the IFS Consumer Price Index
series 64 zf, except China (64 xzf). The Price Index for China was seasonally
adjusted post-1986.

A.3. Equity Price Indices

The data source was the IFS series 62 zf (Industrial share prices) for
25 countries (Australia, Austria, Brazil, Canada, Chile, Finland, France,
Germany, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway,
Peru, Philippines, Saudi Arabia, South Africa, Spain, Sweden, Switzerland,



Thailand, United Kingdom, United States). For Norway, Sweden, France,
United Kingdom, the IFS data were completed with OECD Main Economic
Indicators database (MEI) the IFS data for Austria were completed with
Datastream series.

The data source for Argentina, Belgium, Brazil and Switzerland was
Datastream.

The data source for Malaysia, Turkey and China was Bloomberg.

A.4. Exchange Rates

IF'S series rf was used for all countries.

A.5. Short-Term Interest Rates

The data source was the IFS series 60 b (Money market - interbank - rate)
for 16 countries. For the 8 Euro Area countries (Austria, Belgium, France,
Finland, Germany, Italy, Netherlands, and Spain) the ST interest rate was
constructed as follows: for 1979Q1-1998Q4, the short-term country-specific
inter-bank rate from IFS was used. From 99Q1-01Q4, the overnight EONIA
rate was used as the common short-term interest rate for all 8 countries.
IFS deposit rate series 601 were used for Argentina, Chile, Saudi Arabia and
Turkey. The IFS Treasury Bill rate series 60c were used for Mexico and
Philippines. For Sweden, some missing values at the end of the sample were
replaced by the series 60 a (the two series are similar over the past). For
China, New Zealand and Peru, IFS discount rate 60 were used. For India,
Global Insight data were used to complete IF'S series.

A.6. Long-Term Interest Rates

A long-term government bond rate was available from the IFS (series 61
zf) for 23 countries. Data from OECD were used to complete gaps in the
IFS series for Austria and Sweden. Long-term interest rate series were not
available for Argentina, Brazil, Chile, China, India, Indonesia, Peru, Saudi
Arabia and Turkey.

A.7. Oil Price Index

For oil prices we used monthly averages of Brent Crude series from Datas-
tream.

1.1 Description of the Interpolation Procedure

Let X, t =0,1,2,....,T, be the annual observations compiled as averages
of m time-disaggregated observations, z;;, ¢ = 1,2,....m, t =1,2,...,T, such

that
X = Zwti (1)



The objective is to estimate a relatively smooth set of observations, x4,
i = 1,2,...,m that satisfy the above constraint. We confine ourselves to
pure interpolation methods (namely without using any related economic
time series) and assume that the underlying disaggregated observations are
generated by the following time-varying first-order autoregressive process.
For year t

Ti1 = PtTt—1,m + Mt
T2 = Pt + [t

T3 = P2 + [t

Ttm = PtTt,m—1 + Mt

for year t+1

Ti+1,1 = Pt+1Ttm + Hi+1
Tt41,2 = Pt+1Tt4+1,1 + He+1
Tt41,3 = Pt+1T¢4+1,2 T He+1

Ti+1,m = Pt+1T¢+1,m—1 T He+1

and so on.

The above interpolations depend on the intercept coefficient, sy 1, which
is assumed to vary from one year to the next, and the autoregressive coeffi-
cient psy1. Solving for z441,; recursively forward we have

(1— Piﬂ)
(1= pt+1)
Substituting these in the constraint (1) we find

Ti+1,i = Pi+1l‘tm + g1 , fori=1,2,...,m. (2)

o (1— P?h) M bt+1 (1- P?h)

Xet1 T A Ttm T T — Pl g M-
Pr+1) 1= pr+1 (1= pe+1)
It is easily verified that the interpolations, 441, do in fact exactly add up
to the annual data, X;41.

The uniformly distributed interpolated series, xty1; = X¢y1/m, for
1 =1,2,...,m, correspond to the case where p;y; = 0. We adopt the geo-
metrically (exponentially) interpolated series which is obtained by setting
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we+1 = 0, while other intermediate cases can also be entertained, but in the
case of our applications they tend to generate very similar outcomes.
For the exponential interpolation, p;+1 is computed as the solution to

1—p
X1 = mHﬁl‘m, (3)

where x4, is the observation at the end of the previous year. This formula-
tion is suitable when interpolating the level of the variables (indices) rather
than the growth rates and is applicable to I(1) variables.
To solve for piy1, let Aiy1.m = Xit1/Ztm, and write (3) in the expanded
form
piiy + p;'f;ll + o+ pr1 = Mim, fort =0,1, .., (4)
with
Mm = X1/Tom = m(X1/Xo). (5)

It follows that

Tii1i = TempPiypr, t=0,1,..50 =12, ..m. (6)

To proceed it is required to solve the m!® order polynomial equation
given by (4). For the purpose of our empirical application we are interested
in interpolating quarterly observations from annual series, which implies
solving the quartic equation (for m = 4)

i1+ Piq + oot pra1 — Aegra = 0. (7)
To solve the quartic equation of the general form
A4Z4 + A3Z3 + A222 +A1z+Ag=0

or
A tazd a2 +aiz+ag=0 (8)

with a; = A; /A4, 1 =0,1,2,3, we substitute z = . —a3/4 in (8) which yields

4 p? +qgr+r =0, (9)
where
3 9 L 3
P = a2 = 203, ¢ = a1~ 50203 + 3%
1 . 1 9 3 4
r = —_ - - .
40 7 M8 T 6928 T 5568



In order to solve equation (9) it needs to be made factorable, which leads
to the solution of the following cubic equation

u? + b2u2 + b1u + by = 0, (10)
where
by = —p, by = —4r, by = 4pr — q2.

The cubic equation (10) has only one real root if the discriminant D is
greater than zero, where D is defined by

D=@Q+R?
and
_ 3by— b3  9byby — 27by — 203
@= 9 = 54 ’

In this case, D > 0, the unique real root is given by

Q 1
wm=(RivDWE-— 9 L
1 ( ) (R + \/E) 1/3 3
Then, by using the above solution to the cubic polynomial, u1, the following
quadratic equations arise

1 q

2

— Zuq — = 11

T 4 \/uy pw—l—zul SN 0 (11a)
1

22 — up —pr+ —uy + B E— 0, (11b)

2" 3= p

If z, is a real solution of the pair of quadratics (11) then x,— ag/4 is a
real solution to the quartic equation (8). Thus a real solution to (7) is given
by

P41 = Tpyy1 —1/4

However, multiple real solutions can arise from the solution of the quartic
equation defined by (8).

Consider two real solutions of (8), a and b. Let {y%, y%, y%, Y4, ...} and
{8, y%, v, 18, ...} be the levels of the interpolated series based on the
choice of the roots a and b, respectively. In this case, we define

A In(ydh /ysi—1.4)| + n(yihr /y)| + In(ydy; /yis)] + -
o 4
A 111(24?1/1/?171,4) + !ln(yfm/yfl)‘ + ‘ln(y&l/yfg)! + .
b p—
4

and choose a if A, < Ay, b otherwise.



2 Bootstrapping the GVAR and Tests for Struc-
tural Stability

To derive the empirical distribution of the structural stability tests and
impulse response functions we employ the sieve bootstrap. The sieve boot-
strap has been studied by Kreiss (1992), Biithlmann (1997) and Bickel and
Biithlmann (1999) among others and has now become a standard tool when
bootstrapping time series models.! The method rests on the assumption that
the precise form of the parametric model generating the data is not known
and that the true model belongs to the class of linear processes having an
autoregressive representation of infinite order. Taking the estimated finite
order vector autoregressive process that describes in our case the GVAR
model to be an approximation to the underlying infinite order vector au-
toregressive process, we can use the sieve bootstrap for the basis of deriving
critical values for the structural stability tests and for constructing bootstrap
confidence regions.

In the case of stationary multivariate models, the sieve bootstrap has
been used successfully to handle parameter estimation (Paparoditis, 1996).
In the context of non-stationary time series, Park (2002) established an
invariance principle applicable for the asymptotic analysis of the sieve boot-
strap, which led Chang and Park (2003) to establish its asymptotic validity
in the case of ADF unit root tests. Subsequently, Chang, Park and Song
(2005) established the consistency of the sieve bootstrap for the OLS es-
timates of the cointegrating parameters assuming there exists one cointe-
grating relation amongst the variables under consideration. In what follows
we consider the sieve bootstrap approach by resampling the residuals of the
finite order global vector autoregressive process.

When bootstrapping unit root tests based on first order autoregressions,
Basawa et al. (1991) show that the bootstrap samples need to be generated
with the unit root imposed in order to achieve consistency for the bootstrap
unit root tests. While our focus is not on bootstrapping unit root or coin-
tegration tests, it seems natural to impose the unit root and cointegrating
properties of the model when bootstrapping the statistics of interest. See
also Li and Maddala (1997) who study the bootstrap cointegrating regres-
sion by means of simulation.

We begin by estimating the individual country VARX*(p;, ¢;) models

! Another popular method is the block bootstrap by Kiinsch (1989). Choi and Hall
(2000) discuss the substantial advantages of the sieve bootstrap over the block bootstrap
for linear time series.



in their error correction form subject to reduced rank restrictions, for i =
0,1,2,..., N and t =1,2,...,T, where p; and §; are the estimated lag orders
of the endogenous and foreign variables respectively based on the AIC. The
estimated VARX*(p;, ¢;) are given by

Xit = &0 + ajnt + Pixi -1 + .. + Py, Xip, (12)
- * T * - * -
+ Wioxjy + Waxiy  + .+ Wig X5, g, + Qi

where we denote by 7; the estimated number of cointegrating relations for
country ¢. In estimating the cointegrating rank we entertain the case of an
unrestricted intercept and restricted trend, the latter restricted to lie in the
cointegrating space so as to avoid giving rise to quadratic trends in the level
of the process.

The country specific models (12) are then combined via the link matrices
W; as described in Section 2, giving rise to the GVAR(p) model expressed
in terms of the global variables vector x; as

Gxt =ay+ ait + I:letfl + ...+ I:Iﬁxt_ﬁ + 0y (13)

with p = max(p;, §;), or alternatively,

x; =bo + b1t + Fixp g+ ..+ Fpx 5+ & (14)

where f‘j = Gflflj, Bj = (A}*léj, for j =0,1,...p, & = G 1i, and 3, =
Z;‘FZI £i€,/T. The total number of variables in the model is given by k =

Zizoki where k; is the number of endogenous regressors in country i, ¢ =
0,1,...,N.

Using the estimates from the fitted model (14) obtained from the ob-
served data for p = 2, we generate B bootstrap samples denoted by xgb),
b=1,..., B, from the process

x" = by + byt + Fyx” 4+ Fox®, 4P =12 .17, (15)

by resampling the residuals &; of the fitted model, with x((]b) = Xgp, and

x(_b% = X_1, where xg and x_1 are the the actual initial data vectors. Prior to
any resampling the residuals &; are recentered to ensure that their bootstrap
population mean is zero. The sieve bootstrap effectively reinterprets the
familiar parametric AR model as a device for nonparametric estimation. The
€erTors 5§b) could also be drawn by parametric methods. Both these methods

will be described in what follows. Simulating the GVAR model is clearly



preferable to simulating the country specific models separately. The latter
requires that the country specific foreign variables, x7,, and their lagged
values are treated as strictly exogenous which might not be appropriate and
could lead to unstable outcomes for x;.

It should be noted that the GVAR model given in (15) contains among
others the inflation and real exchange rate variables. The choice of these
variables rather than the price level and the nominal exchange rate was dic-
tated by the results of the unit root tests. Once a set of xgb), b=1,2,...B
are generated, the price level and the nominal exchange rate are easily re-
covered, the foreign star variables are constructed using the weights in Table
2 and the inflation and real exchange rate variables are recreated.? Alter-
natively, the foreign (star) counterparts of these variables could be directly
constructed, although it should be noted that this option is only valid in the
case of fixed weights.

For each replication b, the individual country models are estimated in
their error correction form, where p;, ¢; and the number of the cointegrating
relations, r;, are fixed over all replications at the estimated values p;, ¢; and
7; obtained from the observed data, and a new set of VARX* estimates are
computed from

xiy) =&l +alt+ x|+ .+ x| (16)
+ B+ B, 4 8D Al

We denote by ECAMZ(]T%_1 the estimated error correction terms that corre-
spond to the 7; cointegrating relationships for country ¢, where: = 0,1, ..., N

and j = 1,2, ,TA’Z

2.1 Structural Stability Tests

gth

For the structural stability tests consider the equation of the estimated

ith country error correction model given by

N i A P di  »
Az = MM+ZJ:1%MECMU¢—1+Zn:1sﬁgn,zﬁxi,t—n+ZS:019§S,5AX?¢,S+€it,é,
(17)
which can be written more compactly as

2 As the maximum order of the GVAR model is 2 in the current application, the actual
data is used for the first two observations following such a transformation.



Yit.e = Ol o2it + €in e, (18)
where yit o = Az, 2t = (1,ECA'M~/]»¢_1,AX/~ A

7 7,t—mn? PRASE]

) for j =1,..., 7,
n=1,.,p and s = 0,...,¢; and Oire = (fLits Vij.e, Pip p» Vis o)’ Let €ire be

the residuals from the estimated model (18) and 6% = T *122116%7( the
corresponding estimated error variance.

We consider a number of structural stability tests similar to those con-
sidered by Stock and Watson (1996). The null hypothesis for all the tests
is that of parameter constancy, that is 8y = 6;. The alternative varies de-
pending on the test from non-stationarity, e.g random walks, to a one time
change at an unknown break point for the sequential Wald type statistics,
or some systematic movement in the parameters which we consider all to be
subject to change. For expositional purposes we abstract from the index i.

2.1.1 1. Tests Based on the Cumulative Sum of OLS Residuals

The maximal OLS CUSUM statistic proposed by Ploberger and Kriamer
(1992) is similar to Brown, Durbin and Evans’ (1975) CUSUM statistic al-
though it is computed using OLS rather than recursive residuals. The mean
Ts
square version of this test is also considered. Let (7(d) = AZ_lT_l/ QZ[ l]egs,
S=
where [-] is the greatest integer function, then

PKsup = Sup |CZT(5)| (19)
6€[0,1]
1
PKppsg = / Cor(8)2dS (20)
0

2.1.2 2. Random Walk Alternatives

Nyblom (1989) specifies as the alternative that 6y follows a random walk,
that is, Oy = 60y 41 + ¢, where 1y is i.i.d. and uncorrelated with error term
corresponding to equation (18) and proposed the following statistic

T ~
Ne=T"2Y " SyV; S, (21)

t N T . o
where Sy = E oy ZsCs and Vy = (T! E tzlztzé)al?. The hejteroskedastlclty—
robust version of the 9, statistic is obtained by replacing Vy in (21) with
- T

_ -1 2
V=T E tzleaztzé.
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2.1.3 3. Sequential Wald Statistics
(i) Quandt (1960) likelihood ratio (QLR) statistic, in Wald form

QLR= sup Fir(d)
66(60751)

(ii) The mean Wald statistic (Hansen (1992), Andrews and Ploberger

(1994))
61

MW = FEpp(0)ds
o
(iii) The exponential average Wald statistic by Andrews and Ploberger
(1994)

61
APW =In{ exp(Fyp(6)/2)do}.
do
To obtain the Wald statistic Fyp(0) for a break at t = m, where § = m/T
or m = [T'4] in all the above tests, equation (18) is initially estimated under
the null of no structural change and the resulting sum of squares are defined
as Ry = ejey, where e = (eg1,€42,..., €¢r)’. The model with a one time break
at t = m is given by

Subsample 1: yp = 0,2t + 10, t =1,2,....;m (22)

Subsample 2:  yg = 04,z + oy, t=m+1,...,T. (23)

Let e1s+ and eggy be the residuals from the OLS estimation of (22) and (23)
respectively. Define Ri¢ = €] €1, and Rop = €} e9.
Then,

Re—Ren — Reo
Ro1 + Rz

where & is the dimension of 0;; ¢, and § € [dg, 61] with 61 = 1 — &p. The value
for §p was set to 0.25 and was chosen based on the maximum number of
regressors over the individual VARX* models.

The heteroskedasticity-robust version of the sequential Wald tests is
given by

Fur(8) = (T — 2x)

Fr(5) = (b1 — b2)' Q; ' (b1 — b2)
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where
by = (Z,Z,) 7 Z) Yy,
by = (Z4Z2) ' Z, Yo

and

Q = (22X ) (ZiZ1)"!
(2322) (Y, mrh) — (3 ha))|(ZZo) !

with Z = (2}, ...,2%)" and Yy = (ye1, ..., yer)’. Subscripts 1 and 2 refer to
equations (22) and (23), respectively.
For each replication b, we consider the {th equation of the country-

(b)

specific error correction models of x;,” given in (24)

b Pi . b) Qi /b (b)
ztf - IU’M +Z 71] ZEOM( t— 1+Z Zglz zt n+z 19ng ;kt st
(24)

where EC M, ) 7 = 1,2,...,7; are the estimated error correction terms

ij,t—17
corresponding to the 7; cointegrating relations found for the i** country
based on the observed data and ¢ = 1, ..., k;, and compute the above statistics
w ww® Pl PrE, nP QLR® MW ® and APW®). These
statistics are then sorted into ascending order and their value which exceeds
95% of the observed statistics represents the appropriate 95% critical value
for the structural stability tests.

2.2 Bootstrapping of Impulse Response Functions

On the assumption that the error term u; associated with equation (13)
has a multivariate normal distribution, the £ x 1 vector of the generalized
impulse response functions in the case of a one standard error shock to the
4t equation corresponding to a particular shock in a particular country on
X¢4n 18 given by

fmG_lzue]‘

[t .
ejEue]

where ¢; is a k& x 1 selection vector with unity as its g element, X, is

the covariance matrix of uw;, and F = E;FE} with F = < Fi By ) and

G, = ., n=0,1,2,... (25)

I, O

12

+e

zt,é’



E, = ( I, Onxk ) , which follows from re-writing (14) in its companion
form.? This result also holds in non-Gaussian but linear settings where the
conditional expectations can be assumed to be linear.

In the case of a structural shock the corresponding generalized impulse
response function is given by

F*(P%LG) 'S¢,

/o .
eJ-EueJ

where P% is defined in Section 7.
For each bootstrap replication, having estimated the individual coun-

SIin = ,n=0,1,2, ... (26)

try models using the simulated data xgb), the GVAR is reconstructed as
described above and the impulse responses are calculated based on the for-
mulas (25) and (26) as GI ]( ) ST; (b ) Vn. These statistics are then sorted into
ascending order Vn and the (1 — )100% confidence interval is calculated by
using the v/2 and (1 —/2) quantiles, say s,/ and s(1_/9), respectively of
the bootstrap distribution of GI;, and SI;,.

2.3 Generating the Simulated Errors
2.3.1 Parametric Approach

Under the parametric approach the errors are generated from a multivari-
ate dlstrlbutlon with zero means and covariance matrix 3, given by 3, =

thzlstst. To obtain the simulated errors for the k variables in the GVAR
model we first generate k7" draws from an i.i.d distribution which we denote
by vgb), t =1,2,...,T. In our application we generate vgb) as IIN(0,1;)
although other parametric distributions could also be entertained. Invoking
the spectral decomposition, the variance-covariance matrix of the estimated
GVAR residuals are decomposed as 3. = f’Af’/, where A is a diagonal ma-
trix containing the eigenvalues of 3. on its diagonal and P is an orthogonal
matrix consisting of its eigenvectors. Note that the Choleski decomposition
of 3. is not applicable in this case due to the semi-positive definite nature of
this matrix that follows from the underlying common factor structure of the

GVAR. The errors 6§b), t =1,2,...,T, are then computed as 6(b) = Avgb),

~1/2
where A = PA"”.
3See Pesaran and Shin (1998) for further details.
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2.3.2 Non-Parametric Approach

To obtain a bootstrap sample for the k variables in the GVAR model, we
initially pre-whiten the residuals 7j; by using the generalized inverse of A
as given above, denoted Ag_, so that 7, = A; €. The generalized inverse
of A is required due to the semi-positive definite nature of this matrix as
was pointed out earlier. We then resample with replacement from the kT
elements of the matrix obtained from stacking of the vectors 7, for ¢t =
1,2,...,7. This is done in order to reduce the repetition of the bootstrap

. . WAL
samples. The bootstrap error vector is then obtained as sgb) = 17,5 ), where
(b)

A is the same as above, and 7, ~ is the k x 1 vector of re-sampled values
from (ﬁl, 772, veuy ﬁT) .
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