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A The investment Euler equation

A representative household’s lifetime utility, separable in consumption, Ct, and hours worked,

Lt, is expressed as

E0

∞∑
t=0

βtU(Ct, Lt), (CS 1)

where β is the discount factor. The household’s period t budget constraint is

Ct + It +
Bt+1

Pt

≤ Rt−1Bt

Pt

+
WtLt

Pt

+Πt + rkt utK̂t − a(ut)K̂t, (CS 2)

where It is investment, Bt is the amount of risk-free bonds that pay a nominal gross interest

rate of Rt, Wt is the nominal wage, Πt denotes firms’ profits net of lump-sum taxes, rkt is

the real rental rate of capital, K̂t is the physical capital stock, and a(ut) is the function

that measures the cost of capital utilization per unit of physical capital. Capital owning

households choose the capital utilization rate, ut, that transforms physical capital K̂t into

effective capital Kt as follows

Kt = utK̂t. (CS 3)
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Effective capital is rented to intermediate goods producers at the rate rkt . Standard assump-

tions are: i) ū = 1 and a(ū) = 0, where a bar over a variable denotes its steady state value;

ii) the curvature of the function a(u), given by a′′(u)/a′(u), measures the elasticity of capital

utilization cost and it is such that ζ = a′′(1)/a′(1) > 0.

The representative household accumulates end-of-period t capital according to a standard

capital accumulation equation

K̂t+1 = νt

[
1− S

(
It
It−1

)]
It + (1− δ)K̂t, (CS 4)

where δ is the depreciation rate and νt is the investment-specific technology shock, that is,

a shock to the efficiency with which the final good can be transformed into physical capital,

as in JPT. The log of the investment shock follows the autoregressive stochastic process

log νt = ρ log νt−1 + εvt , where ρ is the autoregressive coefficient.

The IAC is specified as

S
(

It
It−1

)
It =

κ

2

(
It
It−1

− 1

)2

It. (CS 5)

where the IAC function S(·) is such that S(1) = S ′(1) = 0 with κ = S ′′(1) > 0. Here, κ, the

adjustment cost parameter, denotes the inverse of the elasticity of investment with respect

to the shadow price of capital. There are no adjustment costs at the steady state when I is

fixed.

The representative household chooses It, ut, K̂t+1, and Bt+1 to maximise (CS 1) un-

der the period-by-period budget constraint (CS 2) and capital accumulation equation (CS

4). Appendix A.1 shows how log-linearizing the first-order conditions of this problem and

rearranging them yields the dynamic equation for investment (2)

∆ĩt = (β + ϕq)Et∆ĩt+1 − βϕqEt∆ĩt+2 +
1

κ
[ϕkζEtũt+1 − r̃pt + ν̃t]−

ϕq

κ
Etν̃t+1,

where lowercase letters with a tilde denote the respective log deviations of the variables from

their steady state, r̃pt denotes the log-deviation of the ex-ante real interest rate from steady

state, and ϕq = (1− δ)β and ϕk = 1− ϕq.
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A.1 Derivation of equation (3)

The first-order conditions are

It : 1 =νtQt

[
1− S

(
It
It−1

)
− S ′

(
It
It−1

)(
It
It−1

)]
+ βEt

{
λt+1

λt
S ′
(
It+1

It

)(
It+1

It

)2

νt+1Qt+1

}
,

K̂t+1 : Qt =βEt

{
λt+1

λt

[
rkt+1ut+1 − a(ut+1) +Qt+1 (1− δ)

]}
,

Bt+1 : 1 =βEt

{
λt+1

λt

Rt

πt+1

}
, and

ut : rkt =a′ (ut) ,

where Qt denotes the marginal Q, defined as the ratio of the Lagrange multipliers associated

with the capital accumulation equation and the budget constraint (λt), and πt+1 is the

inflation rate in period t+ 1.

Log-linearizing the above first-order conditions around the non-stochastic steady state

yields

q̃t = κ
(̃
it − ĩt−1

)
− βκ

(
Et̃it+1 − ĩt

)
− ν̃t, (CS 6)

q̃t = Etλ̃t+1 − λ̃t + βr̄kEtr̃
k
t+1 + β (1− δ)Etq̃t+1, (CS 7)

Etλ̃t+1 − λ̃t = −(r̃t − Etπ̃t+1), and (CS 8)

r̃kt = ζũt, (CS 9)

where lowercase letters with a tilde denote the respective log deviations of the variables from

their steady state. Although (CS 6)-(CS 9) can be estimated, the empirical literature has

struggled to find an appropriate proxy for q̃t, the marginal Q, which is unobservable. Hayashi

(1982) showed that under some regularity conditions the average Q is equivalent to marginal

Q. However, subsequent empirical studies have confirmed such regularity conditions to be

unsatisfactory, finding insignificant coefficients on average Q. Thus, we follow the treatment

in Groth and Khan (2010) and get rid of q̃t from the log-linearized conditions. Substituting
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(CS 6) and (CS 8) into (CS 7) yields our preferred baseline investment Euler equation with

IAC

ĩt =
1/κ

1 + β + ϕq

[
ϕkEtr̃

k
t+1 − Etr̃

p
t + ν̃t

]
+

1

1 + β + ϕq

ĩt−1 +
β + ϕq(1 + β)

1 + β + ϕq

Et̃it+1 −
βϕq

1 + β + ϕq

Et̃it+2 −
ϕq/κ

1 + β + ϕq

Etν̃t+1,

(CS 10)

where r̃pt denotes the log-deviation of ex-ante real interest rate from steady state, i.e., r̃pt =

r̃t − π̃t+1, and ϕq = (1− δ)/(1− δ + r̄k); ϕk = r̄k/(1− δ + r̄k); and r̄k = 1/β − 1 + δ.1

We can use (CS 9) to substitute out the rental rate of capital, r̃kt , which is an unobservable

variable, with the capacity utilization, ũt, for which a time series is available. So, (CS 10)

becomes

ĩt =
1/κ

1 + β + ϕq

[ϕkζEtũt+1 − Etr̃
p
t + ν̃t]

+
1

1 + β + ϕq

ĩt−1 +
β + ϕq(1 + β)

1 + β + ϕq

Et̃it+1 −
βϕq

1 + β + ϕq

Et̃it+2 −
ϕq/κ

1 + β + ϕq

Etν̃t+1.

Note that this equation is the same as equation (2) in the main text, that is simply rewritten

in first differences of the investment terms. For any variable xt the rational expectations (RE)

forecast error is ηxt|t−1 = xt−Et−1(xt), which implies that Et(xt+1) = xt+1− ηxt+1|t. Moreover,

Etν̃t+1 = ρν̃t, since ν̃t ∼ AR(1) : ν̃t = ρν̃t−1 + εvt . Finally, define Et(̃it+2) = ĩt+2 − ηit+2|t, then

ĩt =
1/κ

1 + β + ϕq

[
ϕkζũt+1 − ϕkζη

u
t+1|t − r̃pt + ηπt+1|t

]
+

1

1 + β + ϕq

ĩt−1

+
β + ϕq(1 + β)

1 + β + ϕq

(̃
it+1 − ηit+1|t

)
− βϕq

1 + β + ϕq

(̃
it+2 − ηit+2|t

)
+

1/κ (1− ϕqρ)

1 + β + ϕq

ν̃t,

1Replacing r̄k into the equations of ϕq and ϕk results in ϕq = β (1− δ) and ϕk = 1−β (1− δ) respectively.
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or

ĩt =
1/κ

1 + β + ϕq

[ϕkζũt+1 − r̃pt ] +
1

1 + β + ϕq

ĩt−1 +
β + ϕq(1 + β)

1 + β + ϕq

ĩt+1

− βϕq

1 + β + ϕq

ĩt+2 + εt, (CS 11)

where εt =
1/κ

1+β+ϕq

[
−ϕkζη

u
t+1|t + ηπt+1|t

]
− β+ϕq(1+β)

1+β+ϕq
ηit+1|t +

βϕq

1+β+ϕq
ηit+2|t +

1/κ(1−ϕqρ)

1+β+ϕq
ν̃t.

Using the facts that ĩt =
1

1+β+ϕq
ĩt+

β+ϕq

1+β+ϕq
ĩt, and

β+ϕq(1+β)

1+β+ϕq
ĩt+1 =

β+ϕq

1+β+ϕq
ĩt+1+

βϕq

1+β+ϕq
ĩt+1,

the terms in ĩ could be written as first difference, so equation (CS 11) becomes

1

1 + β + ϕq

∆ĩt =
1/κ

1 + β + ϕq

[ϕkζũt+1 − r̃pt ] +
β + ϕq

1 + β + ϕq

∆ĩt+1 −
βϕq

1 + β + ϕq

∆ĩt+2 + εt,

or

∆ĩt =
ϕk

κ
ζũt+1 −

1

κ
r̃pt + (β + ϕq)∆ĩt+1 − βϕq∆ĩt+2 + (1 + β + ϕq) εt. (CS 12)

We then just eliminate ν̃t in the error term εt, again by lagging (CS 12), multiplying it by

ρ, which results in

ρ∆ĩt−1 =
ρϕk

κ
ζũt −

ρ

κ
r̃pt−1 + ρ (β + ϕq)∆ĩt − ρβϕq∆ĩt+1 + ρ (1 + β + ϕq) εt−1,

and subtracting the result from (CS 12), such that

∆ĩt − ρ∆ĩt−1 =
ϕk

κ
ζ (ũt+1 − ρũt)−

1

κ

(
r̃pt − ρr̃pt−1

)
+ (β + ϕq)

(
∆ĩt+1 − ρ∆ĩt

)
− βϕq

(
∆ĩt+2 − ρ∆ĩt+1

)
+ (1 + β + ϕq) (εt − ρεt−1) .

Rearranging terms we obtain the baseline specification (3)

[1 + ρ (β + ϕq)]∆ĩt = ρ∆ĩt−1 + (β + ϕq + ρβϕq)∆ĩt+1 − βϕq∆ĩt+2

+
ϕk

κ
ζũt+1 −

ρϕk

κ
ζũt −

1

κ
r̃pt +

ρ

κ
r̃pt−1 + ϵt,

where

ϵt := (1 + β + ϕq) (εt − ρεt−1) , (CS 13)

6



(εt − ρεt−1) =
1/κ

1+β+ϕq

[
−ϕkη

u
t+1|t + ηπt+1|t − ρ

(
−ϕkη

u
t|t−1 + ηπt|t−1

)]
−β+ϕq(1+β)

1+β+ϕq

(
ηit+1|t − ρηit|t−1

)
+ βϕq

1+β+ϕq

(
ηit+2|t − ρηit+1|t

)
+ 1/κ(1−ϕqρ)

1+β+ϕq
εvt , and ε

v
t = ν̃t − ρν̃t−1.

B Computational Details

The empirical moments of the linear model can be represented by 1
T

∑T
t=1 ft (θ, d), where

ft (θ, d) = Z ′
t (Ytb (θ)−Xtd), Yt =

[
∆ĩt ∆ĩt−1 ∆ĩt+1 ∆ĩt+2 r̃pt r̃pt−1 ũt ũt+1

]
, Zt =

(Xt, Z2,t) is the set of instrumental variables partitioned into included (Xt) and excluded

(Z2,t) instruments, b (θ)′ =

[
1 + ρ (β + ϕq) ,−ρ,− (β + ϕq + ρβϕq) , βϕq,

1

κ
,−ρ

κ
, ϕk

ρζ
κ
,−ϕk

ζ
κ

]′
is a vector which contains the structural parameters and d are the strongly identified param-

eters, which are estimated before the computation of the statistical tests. The variable Xt

is 1 corresponding to the constant in the estimated regression specification, which captures

all the steady-state terms. We use Z2,t =
{
∆it−1, r

p
t−2, ut−1

}
in our baseline results. The

sample size is T .

B.1 S and qLL-S tests

Under H0 : θ = θ0, b (θ0) is fixed. The S statistic is

S (θ0) = min
d

1

T

T∑
t=1

ft (θ0, d)
′ V̂ (θ0, d)

−1
T∑
t=1

ft (θ0, d) . (CS 14)

The minimand in the above expression is the so-called continuously updated GMM objective

function, evaluated at the continuously updated estimator for the untested parameter d under

H0, see Stock and Wright (2000). The variance estimator V̂ (θ0, d) is a heteroskedasticity

and autocorrelation consistent (HAC) estimator of Var
(

1√
T

∑T
t=1 ft (θ0, d)

)

V̂ = Γ̂0 +
T∑

j=1

ωj

(
Γ̂j + Γ̂′

j

)
,

where Γ̂j =
[
1
T

∑T
t=j+1 ŵtŵ

′
t

]
, ŵt is ft

(
θ0, d̂

)
− f̄T

(
θ0, d̂

)
, f̄T

(
θ0, d̂

)
= 1

T

∑T
t=1 ft

(
θ0, d̂

)
.

The parameter ωj represents the Barlett kernel.
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The S statistic is obtained by plugging d̂ (θ0) into the objective function (CS 14). The S

test at level α rejects H0 : θ = θ0 when the S statistic exceeds the 1 − α quantile of the χ2

distribution with kz − kx degrees of freedom, where kz and kx are the number of elements in

vectors Zt and Xt, respectively.

The qLL-S test rejects for large values of the statistic

qLL–S(θ0) =
10

11
S (θ0) + qLL–SB(θ0)

where S(θ0) is the S statistic evaluated at θ = θ0, and qLL–SB(θ0) is the statistic that detects

violations of the moment conditions in subsamples. The algorithm for computing the qLL–

SB is detailed in Magnusson and Mavroeidis (2014), where one can also find tables of critical

values.

The confidence sets derived from the tests are obtained by performing a grid search over

the parameter space. The 90% confidence sets are formed by the collection of points that

do not reject H0 : θ = θ0 at 10% significance level.

B.2 Split-sample S test

We derive a GMM version of the split-sample Anderson-Rubin test proposed by Mikusheva

(2021) for linear models. Let Ȳt be the demeaned values of Yt. Define W̄t (θ) = Ȳt
∂b(θ)
∂θ′

,

which is of dimension 1 × 3, and let W (θ) be the T × 3 matrix with stacked terms W̄t (θ),

t = 1, . . . , T . Define also the matrices Y and Z of dimensions T × 8 and T ×k (k = 3 in the

baseline case) of stacked elements of Ȳt and demeaned excluded instruments Z̄2,t. Partition

W (θ) = Y ∂b(θ)
∂θ′

, Y and Z as W (θ) = [W1 (θ) : Wp (θ) : W2 (θ)], Y = [Y1 : Yp : Y2], and

Z = [Z1 : Zp : Z2].

In our case, the first subsample corresponds to 45% of the initial observations. The terms

Wp (θ) and Zp are not used in the procedure in order to keep the exogeneity assumption

valid. Following Mikusheva (2021, p. 30), we set p = 3 because the error ϵt in (CS 13) is

adapted to the t+2 information set and the instruments include variables dated t−1. Then,

estimate the fitted value of W2 (θ) as Ŵ2 (θ) = Z2π̂1 (θ), where π̂1 (θ) = (Z′
1Z1)

−1 Z′
1W1 (θ)

and W1 (θ) = Y1
∂b(θ)
∂θ′

.

8



Finally, we compute the split-sample S statistic as

SM(θ) =
1

T2
b (θ)′Y′

2Ŵ2 (θ)
[
Ω̂ (θ)

]−1

Ŵ2 (θ)
′Y2b (θ) ,

where Ω̂ (θ) is the HAC estimator of the variance of 1√
T2

∑T
t=t2

ˆ̄Wt (θ)
′ Ȳtb (θ) and T2 corre-

sponds to the number of observations of the last subsample.

The split-sample S test at level α rejects H0 : θ = θ0 when SM(θ0) exceeds the 1 − α

quantile of a χ2 distribution with 3 degrees of freedom.

C Data

C.1 Data Sources for baseline analysis

� Gross Private Domestic Investment [GPDI]: Billions of Dollars, Seasonally Ad-

justed Annual Rate; Source: U.S. Bureau of Economic Analysis; FRED - https:

//fred.stlouisfed.org/series/GPDI.

� Fixed Private Investment [FPI]: Billions of Dollars, Seasonally Adjusted Annual

Rate; Source: U.S. Bureau of Economic Analysis; FRED - https://fred.stlouisfed.org/

series/FPI.

� Personal Consumption Expenditures: Durable Goods [PCDG]: Billions of Dol-

lars, Seasonally Adjusted Annual Rate; Source: U.S. Bureau of Economic Analysis;

FRED - https://fred.stlouisfed.org/series/PCDG.

� Gross Domestic Product (implicit price deflator) [GDPDEF]: Index 2012=100,

Seasonally Adjusted; Source: U.S. Bureau of Economic Analysis; FRED - https://

fred.stlouisfed.org/series/GDPDEF.

� Gross Private Domestic Investment (implicit price deflator) [A006RD3Q086SBEA]:

Index 2012=100, Seasonally Adjusted; Source: U.S. Bureau of Economic Analysis;

FRED - https://fred.stlouisfed.org/series/A006RD3Q086SBEA.
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� Gross Private Domestic Investment: Fixed Investment (implicit price defla-

tor) [A007RD3Q086SBEA]: Index 2012=100, Seasonally Adjusted; Source: U.S. Bureau

of Economic Analysis; FRED -

https://fred.stlouisfed.org/series/A007RD3Q086SBEA#0.

� Personal Consumption Expenditures: Durable goods (implicit price defla-

tor) [DDURRD3Q086SBEA]: Index 2012=100, Seasonally Adjusted; Source: U.S. Bureau

of Economic Analysis; FRED -

https://fred.stlouisfed.org/series/DDURRD3Q086SBEA.

� Effective Federal Funds Rate [FEDFUNDS]: Percent, Not Seasonally Adjusted; Source:

Board of Governors of the Federal Reserve System; FRED - https://fred.stlouisfed.org/

series/FEDFUNDS.

� Capacity Utilization: Total Index [TCU]: Percent of Capacity, Seasonally Adjusted;

Source: Board of Governors of the Federal Reserve System; FRED - https://fred.

stlouisfed.org/series/TCU#0.

C.2 Additional exogenous instruments

� Romer and Romer (2004)’s narrative-based monetary policy shock (1969m3-

2007m12); retrieved from Valerie A. Ramey’s website under Data and Programs for

“Macroeconomic Shocks and Their Propagation”, 2016 Handbook of Macroeconomics.

- https://econweb.ucsd.edu/∼vramey/research.html#data.

� Ramey and Zubairy (2018)’s military news shock (1967q1-2015q4); retrieved

from Valerie A. Ramey’s website under Programs and Data for “Government Spending

Multipliers in Good Times and in Bad” with Sarah Zubairy, April 2018 Journal of

Political Economy. - https://econweb.ucsd.edu/∼vramey/research.html#data.

� Spot Crude Oil Price: West Texas Intermediate (WTI) [WTISPLC] (1967q1-

2019q4); Deflated using CPI, Not Seasonally Adjusted; Source: Federal Reserve Bank

of St. Louis; FRED - https://fred.stlouisfed.org/series/WTISPLC.
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� VXO (1967q1-2019q4); Source: Chicago Board of Options Exchange (CBOE) and

retrieved from FRED - https://fred.stlouisfed.org/series/VXOCLS.

Note: This index is unavailable before 1986. Following Bloom (2009), pre-1986 monthly

return volatilities are computed as the monthly standard deviation of the daily S&P500

index normalized to the same mean and variance as the VXO index when they overlap

from 1986 onward.

C.3 Data Transformation

Investment: Investment series is first divided by the civilian non-institutional population

(16 years or over) to convert into per capita terms and the resulting per capita series is then

deflated using the respective implicit price deflators. Two per capita measures of investment

are used in the analysis. They are:

1. SW - Real Fixed Private Investment (FPI).

2. JPT - sum of Real Gross Private Domestic Investment (GPDI) and Real Personal

Consumption Expenditure: Durables Goods (PCDG).

The investment measures are computed, respectively, as FPI
Pfpi

and GDPI
Pgpdi

+ PCDG
Ppcdg

, where

Pgpdi, Ppcdg and Pfpi are the respective implicit price deflators. Growth rates of investment

are then computed as the log difference of the resulting series.

Inflation: Log difference of the quarterly implicit GDP price deflator.

Real (ex-post) interest rate: Difference between the Federal Funds Rate and the GDP

deflator inflation rate.

Capacity utilization: Log of the capacity utilization index.

Narrative-based monetary policy shock: Quarterly average of the monthly series from

Romer and Romer (2004).

Narrative-based military news shock: Defense news variable of Ramey (2016) scaled

by trend GDP following Ramey and Zubairy (2018).

VXO: Quarterly average of the monthly series, demeaned and standardized.
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Oil: Log difference of the real oil price series.

D Robustness checks

In this section we report further results to investigate the robustness of the empirical results

reported in the main text. Figure S.1 shows the results when we use two lags of endogenous

variables as instruments and compares them with our baseline results using one lag. Figure

S.2 shows the results when we restrict our estimation sample to 2004Q4 (as in SW and JPT)

and compares it with our baseline sample ending in 2019Q4. Figures S.3 and S.4 correspond

to Figures 5 and 6 in the main text, respectively, but the external instruments are now added

together with rpt−2 and ut−1 in the set of instruments. The results are unchanged when using

external instruments both for the SW and JPT investment measures, respectively. The main

conclusion from these sensitivity analyses is that the results reported in the paper remain

largely robust.

E The Capital Adjustment Cost Model

In this section, we derive the investment Euler equation with capital adjustment cost. Similar

to the capital accumulation equation (1), the representative household accumulates end-of-

period t capital

K̂t+1 = νtIt + (1− δ)K̂t −D(K̂t, It). (CS 15)

The function D(K̂t, It) is the capital adjustment cost (CAC) which can be defined as

D(K̂t, It) =
σ

2

(
It

K̂t

− δ

)2

K̂t,

where σ > 0 governs the magnitude of adjustment costs to capital accumulation and δ is the

depreciation rate. This functional form is a variant of the one considered in Lucas (1967)

and Lucas and Prescott (1971), and has reappeared more recently in the DSGE literature,

see, for example, Christiano, Eichenbaum, and Rebelo (2011) and Basu and Bundick (2017).

The representative household still chooses It, K̂t+1, Bt+1, and ut to maximise (??) under
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Figure S.1: 90% S and qLL-S confidence sets for θ = (ρ, κ, ζ) in the investment euler
equation model (3). Instruments: One lag - constant, ∆it−1, r

p
t−2, ut−1; Two lags - constant,

∆it−1, ∆it−2, r
p
t−2, r

p
t−3, ut−1, ut−2. Left two columns show the results based on using Fixed

Private Investment as investment proxy, while right two columns use the sum of Gross
Private Domestic Investment and Personal Consumption Expenditure on Durable Goods as
investment proxy. Period: 1967Q1-2019Q4. Newey and West (1987) HAC.
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Figure S.2: 90% S and qLL-S confidence sets for θ = (ρ, κ, ζ) in the investment euler
equation model (3). Instruments: constant, ∆it−1, r

p
t−2, ut−1. Left two columns show the

results based on using Fixed Private Investment as investment proxy, while right two columns
use the sum of Gross Private Domestic Investment and Personal Consumption Expenditure
on Durable Goods as investment proxy. Newey and West (1987) HAC.
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Exogenous Instruments with SW Investment Proxy
Baseline Mon. pol. shock Military news Oil

1967Q1-2019Q4 1969Q2-2007Q4 1967Q1-2015Q4 1967Q1-2019Q4

(a) (b) (c) (d)
S
se
ts

VXO (b)+(c) (d)+(e) (b)+(c)+(d)+(e)

1967Q1-2019Q4 1969Q2-2007Q4 1967Q1-2019Q4 1969Q2-2007Q4

(e) (f) (g) (h)

S
se
ts

Baseline Mon. pol. shock Military news Oil

1967Q1-2019Q4 1969Q2-2007Q4 1967Q1-2015Q4 1967Q1-2019Q4

(i) (j) (k) (l)

q
L
L
-S

se
ts

VXO (j)+(k) (l)+(m) (j)+(k)+(l)+(m)

1967Q1-2019Q4 1969Q2-2007Q4 1967Q1-2019Q4 1969Q2-2007Q4

(m) (n) (o) (p)

q
L
L
-S

se
ts

Figure S.3: 90% S and qLL-S confidence sets for θ = (ρ, κ, ζ) derived from the investment
Euler equation model (3) using Fixed Private Investment as investment proxy. A constant,
∆it−1, r

p
t−2, and ut−1 are common instruments in all specifications. The additional instru-

ment(s) by specification is (are): Mon. pol. shock: Romer and Romer’s (2004) monetary
policy shock; Military news: Ramey and Zubairy’s (2018) military news shock; Oil: growth
rate of real oil price; VXO: financial uncertainty.
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Exogenous Instruments with JPT Investment Proxy
Baseline Mon. pol. shock Military news Oil
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Figure S.4: 90% S and qLL-S confidence sets for θ = (ρ, κ, ζ) derived from the investment
Euler equation model (3) using the sum of Gross Private Domestic Investment and Personal
Consumption Expenditure on Durable Goods as investment proxy. A constant, ∆it−1, r

p
t−2,

and ut−1 are common instruments in all specifications. The additional instrument(s) by
specification is (are): Mon. pol. shock: Romer and Romer’s (2004) monetary policy shock;
Military news: Ramey and Zubairy’s (2018) military news shock; Oil: growth rate of real
oil price; VXO: financial uncertainty.
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the period-by-period budget constraint (CS 2) and capital accumulation equation (CS 15).

The relevant first-order conditions required to derive the log-linearized investment Euler

equations are

It : νtQt =

[
1 + σ

(
It

K̂t

− δ

)
Qt

]
,

K̂t+1 : Qt =βEt

{
λt+1

λt

[
rkt+1ut+1 − a (ut+1)−

σ

2

(
It+1

K̂t+1

− δ

)2
]}

+ βEt

{
λt+1

λt

[
σ

(
It+1

K̂t+1

− δ

)
It+1

K̂t+1

+Qt+1 (1− δ)

]}
,

Bt+1 : 1 =βEt

{
λt+1

λt

Rt

πt+1

}
, and

ut : rkt =a′ (ut) ,

where Qt denotes the marginal Q, defined as the ratio of the Lagrange multipliers associated

with the capital accumulation equation and the budget constraint (λt), and πt+1 is the

inflation rate in period t+ 1.

Log-linearization of the FOCs around the steady state yields

q̃t = σδ
(̃
it − k̃t

)
− ν̃t, (CS 16)

q̃t = Etλ̃t+1 − λ̃t + βσδ2
(
Et̃it+1 − k̃t+1

)
+ β(1− δ)Etq̃t+1 + βr̄kEtr̃

k
t+1, (CS 17)

Etλ̃t+1 − λ̃t = −(r̃t − Etπ̃t+1), and (CS 18)

r̃kt = ζũt. (CS 19)

Similar to the IAC model, combining (CS 16)-(CS 18) yields our baseline investment Euler

equation with CAC

ĩt = k̃t +
1

σδ

[
βr̄kEtr̃

k
t+1 − Etr̃

p
t

]
+ β

(
Et̃it+1 − k̃t+1

)
+

1

σδ
ν̃t −

β (1− δ)

σδ
Etν̃t+1. (CS 20)

Using equation (CS 19), we replace r̃kt+1 by ζũt+1 to obtain

ĩt = k̃t +
1

σδ

[
βr̄kζEtũt+1 − Etr̃

p
t

]
+ β

(
Et̃it+1 − k̃t+1

)
+

1

σδ
ν̃t −

β (1− δ)

σδ
Etν̃t+1.
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As before, we replace the variables in expectations with the observed values and its

respective rational expectation forecast error and also replace Etν̃t+1 by ρν̃t, which results in

ĩt = k̃t+
1

σδ

[
βr̄kζ

(
ũt+1 − ηut+1|t

)
− (r̃pt + ηπt+1|t)

]
+β

(̃
it+1 − ηit+1|t − k̃t+1

)
+
1− β (1− δ) ρ

σδ
ν̃t,

or

ĩt = k̃t +
1

σδ

[
βr̄kζũt+1 − r̃pt

]
+ β

(̃
it+1 − k̃t+1

)
+ εt, (CS 21)

where εt = − 1
σδ

[
βr̄kζηut+1|t + ηπt+1|t

]
− βηit+1|t +

1−β(1−δ)ρ
σδ

ν̃t. Since in steady state I = δK

and ν = 1, log-linearizing the capital accumulation equation (CS 15) results in

k̃t+1 = δ(ν̃t + ĩt) + (1− δ)k̃t.

Therefore, multiplying (CS 21) by (1 − δ), lagging it, and subtracting from the original

equation results in

ĩt − (1− δ)̃it−1 = δ(ν̃t−1 + ĩt−1) +
1

σδ

[
βr̄kζũt+1 − r̃pt − (1− δ)

(
βr̄kζũt − r̃pt−1

)]
+

+ β
(̃
it+1 − (1− δ)̃it

)
− βδ

(
ν̃t + ĩt

)
+ εt − (1− δ)εt−1,

where k̃t − (1− δ)k̃t−1 is replaced by δ(ν̃t−1 + ĩt−1). Further simplification leads us to

∆ĩt = β∆ĩt+1 +
1

σδ

[
βr̄kζũt+1 − r̃pt − (1− δ)

(
βr̄kζũt − r̃pt−1

)]
+ ε̃t−1, (CS 22)

where ε̃t−1 = −βδν̃t + δν̃t−1 + εt − (1− δ)εt−1, or

ε̃t−1 =−
(
βδ − 1− β (1− δ) ρ

σδ

)
ν̃t +

[
δ − (1− δ)

1− β (1− δ) ρ

σδ

]
ν̃t−1

− 1

σδ

[
βr̄kηut+1|t + ηπt+1|t − (1− δ)

[
βr̄kηut|t−1 + ηπt|t−1

]]
− β

[
ηit+1|t − (1− δ)ηit|t−1

]
.

We need to get rid of the ν̃ in the error term. Therefore, lagging (CS 22), multiplying it by
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ρ, and subtracting from (CS 22) results in

∆ĩt − ρ∆ĩt−1 = β
(
∆ĩt+1 − ρ∆ĩt

)
+

1

σδ

[
βr̄kζ (ũt+1 − ρũt)−

(
r̃pt − ρr̃pt−1

)]
− (1− δ)

σδ

[(
βr̄kζ (ũt − ρũt−1)−

(
r̃pt−1 − ρr̃pt−2

))]
+ ε̃t−1 − ρε̃t−2,

or

∆ĩt (1 + ρβ) = ρ∆ĩt−1 + β∆ĩt+1 +
βr̄k

σδ
ζũt+1 −

1

σδ
r̃pt −

(1− δ)βr̄k

σδ
ζũt +

1− δ

σδ
r̃pt−1

− ρβr̄k

σδ
ζũt +

ρ

σδ
r̃pt−1 +

ρ(1− δ)βr̄k

σδ
ζũt−1 −

ρ(1− δ)

σδ
r̃pt−2 + ε̃t−1 − ρε̃t−2.

The above equation can be rewritten as

∆ĩt =
ρ

1 + ρβ
∆ĩt−1 +

β

1 + ρβ
∆ĩt+1 +

βr̄k

σδ (1 + ρβ)
ζũt+1 −

1

σδ (1 + ρβ)
r̃pt

− (1− δ) βr̄k

σδ (1 + ρβ)
ζũt +

1− δ

σδ (1 + ρβ)
r̃pt−1 −

ρβr̄k

σδ (1 + ρβ)
ζũt +

ρ

σδ (1 + ρβ)
r̃pt−1

+
ρ(1− δ)βr̄k

σδ (1 + ρβ)
ζũt−1 −

ρ(1− δ)

σδ (1 + ρβ)
r̃pt−2 + εt−1, (CS 23)

where εt−1 (1 + ρβ) := (ε̃t−1 − ρε̃t−2) is

−βδν̃t + δν̃t−1 −
1

σδ

[
βr̄kηut+1|t + ηπt+1|t

]
− βηit+1|t +

1− β (1− δ) ρ

σδ
ν̃t

− (1− δ)

[
− 1

σδ

[
βr̄kηut|t−1 + ηπt|t−1

]
− βηit|t−1 +

1− β (1− δ) ρ

σδ
ν̃t−1

]
+ ρβδν̃t−1 − ρδν̃t−2 +

ρ

σδ

[
βr̄kηut|t−1 + ηπt|t−1

]
+ ρβηit|t−1 − ρ

1− β (1− δ) ρ

σδ
ν̃t−1

+ ρ(1− δ)

[
− 1

σδ

[
βr̄kηut−1|t−2 + ηπt−1|t−2

]
+ ρβηit−1|t−2 − ρ

1− β (1− δ) ρ

σδ
ν̃t−2

]
.
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Further simplifying the above equation becomes

εt−1 (1 + ρβ) =− βδεvt + δεvt−1 −
1

σδ

[
βr̄kηut+1|t + ηπt+1|t

]
− βηit+1|t +

1− β (1− δ) ρ

σδ
εvt

− (1− δ)

[
− 1

σδ

[
βr̄kηut|t−1 + ηπt|t−1

]
− βηit|t−1 +

1− β (1− δ) ρ

σδ
εvt−1

]
+

ρ

σδ

[
βr̄kηut|t−1 + ηπt|t−1

]
+ ρβηit|t−1

+ ρ(1− δ)

[
− 1

σδ

[
βr̄kηut−1|t−2 + ηπt−1|t−2

]
+ ρβηit−1|t−2

]
. (CS 24)

Then, grouping some terms from above we get

∆ĩt =
ρ

1 + ρβ
∆ĩt−1 +

β

1 + ρβ
∆ĩt+1 +

βr̄k

σδ (1 + ρβ)
ζũt+1 −

1

σδ (1 + ρβ)
r̃pt

− βr̄k (1− δ + ρ)

σδ (1 + ρβ)
ζũt +

1− δ + ρ

σδ (1 + ρβ)
r̃pt−1 +

ρ(1− δ)βr̄k

σδ (1 + ρβ)
ζũt−1

− ρ(1− δ)

σδ (1 + ρβ)
r̃pt−2 + εt−1. (CS 25)

It can be gauged from looking at the equation (CS 24) that we need to use at least the

second lag of endogenous variables as instruments in order to ensure exogeneity.

Figure S.5 shows that confidence sets are large suggesting weak identification of the

structural parameters also in the capital adjustment cost model.

F On Cross-equation Restrictions and Identification

In this Subsection, we use a simple example to demonstrate how cross-equation restrictions

from a system method can achieve identification of a model that is not identified using a

single-equation GMM approach at the cost of losing robustness to misspecification.

Recall that GMM estimates the single equation (2), where we have also assumed that β

and δ are known. For the purpose of this discussion it suffices to simplify the exposition to

the case of a single unknown parameter. Hence, assume ρ = 0 and κ is known, so there is

only one unknown parameter, ζ, and the model in equation (2) can be written as

Etyt+2 = ζEtxt+1 + ν̃t (CS 26)
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Figure S.5: 90% S and qLL-S confidence sets for θ = (ρ, σ, ζ) derived from the investment
Euler equation model (CS 25). Instruments: constant, ∆it−2, r

p
t−3, ut−2. The investment

proxies are Fixed Private Investment (left column) and the sum of Gross Private Domes-
tic Investment and Personal Consumption Expenditure on Durable Goods (right column).
Newey and West (1987) HAC. Period: 1967Q1-2019Q4.
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where yt+2 := κ
(
∆ĩt − (β + ϕq)∆ĩt+1 + βϕq∆ĩt+2

)
+ r̃pt and xt := ϕkũt, with ϕk = 1 −

(1− δ) β.

Now, ζ is identified in (CS 26) if and only if var (Etxt+1) > 0. But in a limited-information

setting, we do not observe Etxt+1, so we have to instrument for it using predetermined

variables Zt that belong to the information set at time t− 1. Specifically, the corresponding

single-equation GMM regression for (CS 26) is

yt+2 = ζxt+1 + [ν̃t + yt+2 − Etyt+2 − ζ (xt+1 − Etxt+1)]︸ ︷︷ ︸
ξt

, (CS 27)

with Et−1ξt = 0, and any predetermined variable is a valid instrument for xt+1. So, for the

(single-equation) GMM approach to identify ζ it is necessary that var (Et−1xt+1) > 0.

It is possible to come up with examples where a system method will identify ζ while the

single-equation GMM approach will not. Suppose

xt = ωt + θωt−1, |θ| < 1, (CS 28)

(an invertible first-order moving average process) and ωt (the structural shock driving ca-

pacity utilization xt = ϕkũt) is orthogonal to the investment-specific technology shock ν̃t.

Equation (CS 28) implies that Etxt+1 = θωt, while Et−1xt+1 = 0. So, ζ can be identified if we

use the additional equation (CS 28), but it is not identified from a single-equation approach

that does not make enough assumptions to pin down Etxt+1.

In terms of implementation, because of the triangular nature of this simple example, i.e.,

because (CS 28) does not involve ν̃t or yt, we can demonstrate how identification works as

follows. First estimate (CS 28) to obtain ωt and θ, next, compute zt := θωt = Etxt+1, and

finally, estimate ζ from the regression

yt+2 = ζzt + (ν̃t + yt+2 − Etyt+2)︸ ︷︷ ︸
et

. (CS 29)

Unless θ = 0 (rank condition), which would imply zt = 0 for all t, the above regression iden-

tifies ζ, so a system analysis will produce bounded confidence sets, while the single-equation
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GMM analysis based on (CS 26) that uses only predetermined variables to instrument for

xt+1 will produce unbounded confidence sets.

Misspecification The increased precision of the system approach comes at the cost of

lower robustness to misspecification. Suppose the true law of motion for xt were given by

xt = γxt−1 + ωt, (CS 30)

i.e., an AR(1) instead of an MA(1). Using (CS 28) instead of (CS 30), one would get an

inconsistent estimate of Etxt+1, say z
∗
t = θ∗ω∗

t , where θ
∗, ω∗

t are the pseudo-true values of

θ, ωt in the MA(1) specification (CS 28), when the data is generated according to (CS 30).

So, instead of using (CS 29), a misspecified system approach would be estimating ζ from the

incorrect regression

yt+2 = ζz∗t + [ζ (zt − z∗t ) + et]︸ ︷︷ ︸
e∗t

, cov(z∗t , e
∗
t ) ̸= 0. (CS 31)

This can be shown as follows. Suppose xt follows (CS 30). Then, its first autocorrelation

is γ. The pseudo true value of the coefficient θ in the MA(1) specification (CS 28) is obtained

by solving the equation (see Hamilton, 1995, p. 49)

γ =
θ∗

1 + θ∗2
, (CS 32)

and we can choose the (unique) invertible solution that satisfies |θi| < 1. Given θ∗, the

corresponding estimate of the shock in (CS 28), ω∗
t , can be solved from {xt} using the

backward recursion

ω∗
t =

∞∑
j=0

(−θ∗)j xt−j, (CS 33)

while the true structural shock in (CS 30) is simply

ωt = xt − γxt−1.
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So, we have

cov (z∗t , (zt − z∗t )) = cov (z∗t , zt) + θ∗2var (ω∗
t )

=
σ2
ωγθ

∗

1− γ2
1

1− (γθ∗)2
+ θ∗2

(1− γθ∗)σ2
ω

(1 + γθ∗) (1− γ2) (1− θ∗2)

= σ2
ωθ

∗ γ (1− θ∗2) + θ∗ (1− γθ∗)2(
1− (γθ∗)2

)
(1− γ2) (1− θ∗2)

, (CS 34)

because

cov (z∗t , zt) = cov

(
θ∗

∞∑
j=0

(−θ∗)j xt−j, γxt

)

=
σ2
ωθ

∗γ

1− γ2

∞∑
j=0

(−θ∗γ)j = σ2
ωγθ

∗

1− γ2
1

1− (γθ∗)2

and

xt = ω∗
t (1 + θ∗L) = ωt (1− γL)−1 ,

so ω∗
t is an AR(2) process, ω∗

t (1− a1L− a2L
2) = ωt, with a1 = γ − θ∗, and a2 = γθ∗, and

therefore, its variance is given by (see Hamilton, 1995, p. 58)

var (ω∗
t ) =

1− a2
1 + a2

σ2
ω

(1− a2)
2 − a21

=
1− γθ∗

1 + γθ∗
σ2
ω

(1− γθ∗)2 − (γ − θ∗)2

=
(1− γθ∗)σ2

ω

(1 + γθ∗) (1− γ2) (1− θ∗2)
.

Substituting for γ using θ∗ from (CS 32) in (CS 34), we get

cov (z∗t , (zt − z∗t )) =
σ2
ωθ

∗2 (2− θ∗4) (θ∗2 + 1)
2

(1− θ∗2) (1− θ∗ + θ∗2) (1 + θ∗ + θ∗2) (1 + 2θ∗2)
̸= 0.

It follows, therefore, that (CS 31) suffers from omitted variable bias because z∗t correlates

with e∗t . Thus, the system estimate of ζ will be biased.

A DSGE model allows us to use cross-equation restrictions to determine Etxt+1 under
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rational expectations, see Footnote 4. In this present simple example, one may think that we

are not actually using any cross-equation restrictions because Etxt+1 = θωt does not involve

the structural parameter ζ of the original target equation (CS 26). However, in more general

(non-triangular) settings where xt is allowed to be simultaneously determined with yt, Etxt+1

will depend also on ζ, and system estimation will indeed impose cross-equation restrictions.

G Prior-posterior distributions using JPT’s model and

SW’s dataset
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Figure S.6: Prior-posterior plots using JPT’s model and SW’s dataset. All estimations are
done using Dynare. The posterior distributions are based on 500,000 draws, with the first
50% draws discarded as burn-in draws. The average acceptance rate is around 25-30%.
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Investment adjustment cost (κ) Inverse of elasticity capital utilization cost (ψ = 1
ζ ) AR(1) coefficient investment shock (ρ)
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Figure S.7: Prior-posterior plots using SW’s model and JPT’s dataset. All estimations are
done using Dynare. The posterior distributions are based on 500,000 draws, with the first
50% draws discarded as burn-in draws. The average acceptance rate is around 25-30%.
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