
DERIVEST

John R. D’Errico
Email: woodchips@rochester.rr.com

September 5, 2007

1 Introduction - Derivative Estimation

The general problem of differentiation of a function typically pops up in
three ways in Matlab.

• The symbolic derivative of a function.

• Compute numerical derivatives of a function defined only by a sequence
of data points.

• Compute numerical derivatives of a analytically supplied function.

Clearly the first member of this list is the domain of the symbolic toolbox,
or some set of symbolic tools. Numerical differentiation of a function defined
by data points can be achieved with the function gradient, or perhaps by
differentiation of a curve fit to the data, perhaps to an interpolating spline
or a least squares spline fit.

The third class of differentiation problems is where DERIVEST is valu-
able. This document will describe the methods used in DERIVEST.

2 Numerical differentiation of a general function
of one variable

Surely you recall the traditional definition of a derivative, in terms of a limit.

f ′(x) = lim
δ→0

f(x + δ)− f(x)
δ

(1)

For small δ, the limit approaches f ′(x). This is a one-sided approxima-
tion for the derivative. For a fixed value of δ, this is also known as a finite
difference approximation (a forward difference.) Other approximations for

1



3 UNEQUALLY SPACED FINITE DIFFERENCE RULES

the derivative are also available. We will see the origin of these approxima-
tions in the Taylor series expansion of a function f(x) around some point
x0.

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x0)+

(x− x0)3

6
f (3)(x0) +

(x− x0)4

24
f (4)(x0)+

(x− x0)5

120
f (5)(x0) +

(x− x0)6

720
f (6)(x0) + ... (2)

Truncate the series in (2) to the first three terms, then form the forward
difference approximation (1), where x = x0 + δ.

f ′(x0) =
f(x0 + δ)− f(x0)

δ
− δ

2
f ′′(x0)−

δ2

6
f ′′′(x0) + ... (3)

When δ is small, δ2 and any higher powers are vanishingly small. So
we tend to ignore those higher powers, and describe the approximation in
(3) as a ”first” order approximation since the error in this approximation
approaches zero at the same rate as the first power of δ. 1 The values of
f ′′(x0) and f ′′′(x0), while unknown to us, are fixed constants as δ varies.

Higher order approximations arise in the same fashion. The central
difference (4) is a second order approximation.

f ′(x0) =
f(x0 + δ)− f(x0 − δ)

2δ
− δ2

3
f ′′′(x0) + ... (4)

3 Unequally spaced finite difference rules

While most finite difference rules used to differentiate a function will use
equally spaced points, this fails to be appropriate when one does not know
the final spacing. Adaptive quadrature rules can succeed by subdividing each
sub-interval as necessary. But an adaptive differentiation scheme must work
differently, since differentiation is a point estimate. DERIVEST generates a
sequence of sample points that follow a log spacing away from the point in
question, then it uses a single rule (generated on the fly) to estimate the
desired derivative. Because the points are log spaced, the same rule applies
at any scale, with only a scale factor applied.

1We would normally write these additional terms using O() notation, where all that
matters is that the error term is O(δ) or perhaps O(δ2), but explicit understanding of
these error terms will be useful in the Romberg extrapolation step later on.

2



4 ODD AND EVEN TRANSFORMATIONS OF A FUNCTION

4 Odd and even transformations of a function

Returning to the Taylor series expansion of f(x) around some point x0, an
even function 2 around x0 must have all the odd order derivatives vanish at
x0. An odd function has all its even derivatives vanish from its expansion.
Consider the derived functions fodd(x) and feven(x).

fodd(x) =
f(x− x0)− f(−x− x0)

2
(5)

The Taylor series expansion of fodd(x) has the useful property that we
have killed off any even order terms, but the odd order terms are identical
to f(x), as expanded around x0.

fodd(x) = (x− x0)f ′(x0) +
(x− x0)3

6
f (3)(x0)+

(x− x0)5

120
f (5)(x0) +

(x− x0)7

5040
f (7)(x0) + ... (6)

Likewise, feven(x) has no odd order terms or a constant term, but other
even order terms that are identical to f(x).

feven(x) =
f(−x− x0)− 2f(x0) + f(x− x0)

2
(7)

feven(x) =
(x− x0)2

2
f (2)(x0) +

(x− x0)4

24
f (4)(x0)+

(x− x0)6

720
f (6)(x0) +

(x− x0)8

40320
f (8)(x0) + ... (8)

The point of these transformations is we can rather simply generate a
higher order approximation for any odd order derivatives of f(x) by working
with fodd(x). Even order derivatives of f(x) are similarly generated from
feven(x). For example, a second order approximation for f ′(x0) is trivially
written in (9) as a function of δ.

f ′(x0; δ) =
fodd(x0 + δ)

δ
− δ2

6
f (3)(x0) (9)

We can do better rather simply, so why not? (10) shows a fourth order
approximation for f ′(x0).

f ′(x0; δ) =
8fodd(x0 + δ)− fodd(x0 + 2δ)

6δ
+

δ4

30
f (5)(x0) (10)

2An even function is one which expresses an even symmetry around a given point. An
even symmetry has the property that f(x) = f(−x). Likewise, an odd function expresses
an odd symmetry, wherein f(x) = −f(−x).

3



5 ROMBERG EXTRAPOLATION METHODOLOGY APPLIED TO
DERIVATIVE ESTIMATION

Again, the next non-zero term (11) in that expansion has a higher power
of δ on it, so we would normally ignore it since the lowest order neglected
term should dominate the behavior for small δ.

δ6

252
f (7)(x0) (11)

DERIVEST uses similar approximations for all derivatives of f up to the
fourth order. Of course, its not always possible for evaluation of a function
on both sides of a point, as central difference rules will require. In these
cases, you can specify forward or backward difference rules as appropriate.

5 Romberg extrapolation methodology applied to
derivative estimation

Some individuals might suggest that the above set of approximations are
entirely adequate for any sane person. Can we do better?

Suppose we were to generate several different estimates of the approxi-
mation in (3) for different values of δ at a fixed x0. Thus, choose a single
δ, estimate a corresponding resulting approximation to f ′(x0), then do the
same for δ/2. If we assume that the error drops off linearly as δ → 0, then it
is a simple matter to extrapolate this process to a zero step size. Our lack of
knowledge of f ′′(x0) is irrelevant. All that matters is δ is small enough that
the linear term dominates so we can ignore the quadratic term, therefore
the error is purely linear.

f ′(x0) =
f(x0 + δ)− f(x0)

δ
− δ

2
f ′′(x0) (12)

The linear extrapolant for this interval halving scheme as δ → 0 is given
by (13).

f ′0 = 2f ′δ − f ′δ/2 (13)

Since I’ve always been a big fan of convincing myself that something
will work before I proceed too far, lets try this out in Matlab. Consider the
function ex. Generate a pair of approximations to f ′(0), once at δ of 0.1,
and the second approximation at 1/2 that value. Recall that d(ex)

dx = ex, so
at x = 0, the derivative should be exactly 1. How well will we do?

>> format long g

>> f = @(x) exp(x);
>> del = 0.1;

4



5 ROMBERG EXTRAPOLATION METHODOLOGY APPLIED TO
DERIVATIVE ESTIMATION

>> df1 = (f(del) − f(0))/del
df1 =

1.05170918075648

>> df2 = (f(del/2) − f(0))/(del/2)
df2 =

1.02542192752048

>> 2*df2 − df1
ans =

0.999134674284488

In fact, this worked very nicely, reducing the error to roughly 1 percent
of our initial estimates. Should we be surprised at this reduction? Not if
we recall that last term in (3). We saw there that the next term in the
expansion was O(δ2). Since δ was 0.1 in our experiment, that 1 percent
number makes perfect sense.

The Romberg extrapolant in (13) assumed a linear process, with a spe-
cific reduction in δ by a factor of 2. Assume the two term (linear + quadratic)
residual term in (3), evaluating our approximation there with a third value
of δ. Again, assume the step size is cut in half again. The three term
Romberg extrapolant is given by (14).

f ′0 =
1
3
f ′δ − 2f ′δ/2 +

8
3
f ′δ/4 (14)

A quick test in matlab yields much better results yet.

>> format long g
>> f = @(x) exp(x);
>> del = 0.1;

>> df1 = (f(del) − f(0))/del
df1 =

1.05170918075648

>> df2 = (f(del/2) − f(0))/(del/2)
df2 =

1.02542192752048

>> df3 = (f(del/4) − f(0))/(del/4)
df3 =

1.01260482097715

>> 1/3*df1 − 2*df2 + 8/3*df3
ans =

1.00000539448361

Again, DERIVEST uses the appropriate multiple term Romberg extrap-
olants for all derivatives of f up to the fourth order. This, combined with

5



6 UNCERTAINTY ESTIMATES FOR DERIVEST

the use of high order approximations for the derivatives, allows the use of
quite large step sizes.

6 Uncertainty estimates for DERIVEST

We can view the Romberg extrapolation step as a polynomial curve fit in
the step size parameter δ. Our desired extrapolated value is seen as simply
the constant term coefficient in that polynomial model. Remember though,
this polynomial model (see (10) and (11)) has only a few terms in it with
known non-zero coefficients. That is, we will expect a constant term a0, a
term of the form a1δ

4, and a third term a2δ
6.

A neat trick to compute the ”statistical” uncertainty in the estimate
of our desired derivative is to use statistical methodology for that error
estimate. While I do appreciate that there is nothing truly statistical or
stochastic in this estimate, the approach still works nicely, providing a very
reasonable estimate in practice. A three term Romberg-like extrapolant,
then evaluated at four distinct values for δ, will yield an estimate of the
standard error of the constant term, with one spare degree of freedom. The
uncertainty is then derived by multiplying that standard error by the ap-
propriate percentile from the Students-t distribution.

>> tcdf(12.7062047361747,1)
ans =

0.975

This critical level will yield a two-sided confidence interval of 95 percent.
These error estimates are also of value in a difference sense. Since they

are efficiently generated at all the different scales, the particular spacing
which yields the minimum predicted error is chosen as the best derivative
estimate. This has been shown to work consistently well. A spacing too
large tends to have large errors of approximation due to the finite difference
schemes used. But a too small spacing is bad also, in that we see a significant
amplification of least significant fit errors in the approximation. A middle
value generally seems to yield quite good results. For example, DERIVEST
will estimate the derivative of ex automatically. As we see, the final overall
spacing used was 0.1953125.

>> [d,e,del]=derivest(@(x) exp(x),1)
d =

2.71828182845904
e =

1.02015503167879e−14
del =

0.1953125

6



7 DERIVEST IN ACTION

However, if we force the step size to be artificially large, then approxi-
mation error takes over.

>> [d,e,del]=derivest(@(x) exp(x),1,'FixedStep',10)
d =

2.3854987890005
e =

3.90016042034995
del =

10

And if the step size is forced to be too small, then we see noise dominate
the problem.

>> [d,e,del]=derivest(@(x) exp(x),1,'FixedStep',.0000000001)
d =

2.71826406220403
e =

0.000327191484277048
del =

1e−10

DERIVEST, like Goldilocks in the fairy tale bearing her name, stays
comfortably in the middle ground.

7 DERIVEST in action

How does DERIVEST work in action? A simple nonlinear function with a
well known derivative is ex. At x = 0, the derivative should be 1.

>> [d,err] = derivest(@(x) exp(x),0)
d =

0.999999999999997

err =
2.22066469352214e−14

A second simple example comes from trig functions. The first four
derivatives of the sine function, evaluated at x = 0, should be respectively
[cos(0),−sin(0),−cos(0), sin(0)], or [1, 0,−1, 0].

>> d = derivest(@(x) sin(x),0,1)
d =

0.999999999999999

>> d = derivest(@(x) sin(x),0,2)

7



REFERENCES

d =
0

>> d = derivest(@(x) sin(x),0,3)
d =

−1.00000000000046

>> d = derivest(@(x) sin(x),0,4)
d =

0

8 Gradient (GRADEST) and Hessian (HESSIAN) es-
timation

Estimation of the gradient vector (GRADEST) of a function of multiple vari-
ables is a simple task, requiring merely repeated calls to DERIVEST. Like-
wise, the diagonal elements of the hessian matrix are merely pure second
partial derivatives of a function. HESSDIAG accomplishes this task, again
calling DERIVEST multiple times. Efficient computation of the off-diagonal
(mixed partial derivative) elements of the Hessian matrix uses a scheme
much like that of DERIVEST, wherein DERIVEST is called to determine an
initial step size, then Romberg extrapolation is used to improve a set of
second order finite difference estimates of those mixed partials.

9 Conclusion

DERIVEST is an a adaptive scheme that can compute the derivative of arbi-
trary (well behaved) functions. It is reasonably fast as an adaptive method.
Many options have been provided for the user who wishes the ultimate
amount of control over the estimation.

10 Acknowledgments

My thanks are due to Shaun Simmons for convincing me to learn enough
LaTeX to write this document.

References

[1] Lyness, J. M., Moler, C. B. (1966). Vandermonde Systems and Numerical
Differentiation. Numerische Mathematik.

8



REFERENCES REFERENCES

[2] Lyness, J. M., Moler, C. B. (1969). Generalized Romberg Methods for
Integrals of Derivatives. Numerische Mathematik.

[3] NAG Library. NAG Fortran Library Document: D04AAF

9


