
Online Supplementary Appendix to

‘A high-dimensional multinomial logit model’

This Online Supplementary Appendix has four parts:

Part A: Additional details on the Bayesian inference method.

Part B: Numerical experiments.

Part C: Mixed logit model.

Part D: Additional details on the empirical application.
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A Bayesian inference

A.1 Truncation level

The stick-breaking representation of the Dirichlet process prior, as in Section 2.3.2, pro-

vides a guideline for selecting the truncation level L = LK for outcome and L = LJ

explanatory categories. When the higher order probabilities {pl}∞l=L in (9) are small

enough, the approximation error is negligible. Ishwaran and Zarepour (2000) derive the

moments of
∑∞

l=L pl,

E

[
∞∑
l=L

pl

]
=

(
λ

λ+ 1

)L−1

, var

[
∞∑
l=L

pl

]
=

(
λ

λ+ 2

)L−1

−
(

λ

λ+ 1

)2L−2

,

which are the mean and the variance of the tail probability, respectively, and λ = λJ

corresponding to J outcome categories or λ = λK corresponding to Kd explanatory

categories. These statistics can be used to test whether a truncation level results in a

small enough approximation error for a particular λ.

A.2 Concentration parameter

Suppose we have a prior belief about the number of clusters L∗. Van den Hauwe (2015)

proposes to set λ = λJ corresponding to J outcome categories, or λ = λK corresponding

to Kd explanatory categories, to a value that sets mode[L∗] = m∗,

λ =
1

2
(exp(−δc(m∗ + 1)) + exp(−δc(m∗))) , (24)

with δc(1) = log(c(1, J)), δc(m∗) = log(c(m∗, J))− log(c(m∗ − 1, J)).

Choosing λ as in (24) controls the prior mode of the number of clusters. Conley

et al. (2008) show that a fixed concentration parameter may results in a tight prior on

the number of clusters. By putting a prior on the concentration parameter, we can also

govern the prior variance around the number of clusters.

We specify a prior distribution f(λ) with prior mean equal to the value in (24).
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To check the dispersion around the prior mode of L∗, we evaluate the marginal prior

probability density function with Monte Carlo integration,

f(L∗) =

∫
f(L∗|λ)f(λ)dλ, (25)

where f(L∗|λ) is the probability function derived by Antoniak (1974),

f(L∗|λ) = Pr[L∗ = j|λ] = c(j, J)J !λj
Γ(λ)

Γ(λ+ J)
, (26)

for which Escobar and West (1995) discuss how the factors c(j, J) are calculated.

A.3 Posterior simulation

This appendix provides details on the sampling steps for parameter estimation in the

two-way Dirichlet process mixture, as discussed in Section 3.2.

A.3.1 Initialization of the sampler

The initial draw for the concentration parameters is λJ |θJ1, θJ2 ∼ Gamma(θJ1, θJ2) and

λK |θK1, θK2 ∼ Gamma(θK1, θK2), and for the latent variables q|λJ ∼ stick(λJ), Cj|q ∼∑LJ

l=1 qlδ(l), p|λK ∼ stick(λK), and Dk|p ∼
∑LK

l=1 plδ(l). We initialize αj = log
(∑

I[yi=j]∑
I[yi=1]

)
for j = 2, . . . , J and set the elements of β̃ to zero. Given D = (D1, . . . , DKd

), define the

K∗-dimensional vector x∗i = (w′i, d
∗
i
′)′, with d∗i = (

∑Kd

k=1 I[Dk = D∗1]dik, . . . ,
∑Kd

k=1 I[Dk =

D∗md
]dik)

′ where D∗ = {D∗1, . . . , D∗md
} denote the current md unique values of D.

A.3.2 Sample the latent variables ω

To sample the coefficients α and β, we rewrite the multinomial logit model to J−1 binary

logistics regressions,

P (y
(j)
i = j|xi) =

exp(ηij)

1 + exp(ηij)
, (27)
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where j > 1, and y
(j)
i equals one if yi = j and zero if yi = 1, for all i for which yi ∈ {1, j}.

In each binary logit, the coefficients αj and βj can be sampled conditional on Polya-

Gamma latent variables (Polson et al., 2013).

These latent variables ω
(j)
i are sampled as

ω
(j)
i |αj, β̃, C,D, xi ∼ PG(1, ηij), (28)

for all i for which yi ∈ {1, j}, and for j = 2, . . . , J . Define ω(j) as the N (j)-dimensional

vector, with elements ω
(j)
i corresponding to i for which yi ∈ {1, j}, and N (j) =

∑N
i=1 1[yi =

1 or yi = j]. The Nl-dimensional block diagonal matrix Ωl stacks the ω(j) with j for which

Cj = l on the diagonal, where Nl =
∑J

j=2 1[Cj = l]
∑N

i=1 1[yi = 1 or yi = j]. The set of

all latent variables is denoted as ω = {ω(j)}Jj=2.

A.3.3 Sample the model parameters α and β̃

First, the coefficients are sampled per nonempty outcome cluster l. Define ζ(j) as an

N (j)-dimensional vector, with elements y
(j)
i −0.5 corresponding to i for which yi ∈ {1, j}.

The Nl-dimensional vector ζl stacks the ζ(j) with j for which Cj = l. The rows of

the Nl × K∗ regressor matrix Xl contain the x∗i
′ corresponding to the rows in ζl. The

Nl × (
∑J

j=2 1[Cj = l] + K∗) matrix Zl = (Al, Xl) concatenates the regressor matrix Xl

to the Nl × (
∑J

j=2 1[Cj = l]) matrix Al with intercepts corresponding to the categories

j > 1 in cluster l: its rows contain zeros except for the column corresponding to yi = j.

For l = 1, we have Z1 = A1. For all nonempty outcome clusters l,

(α̃′l, β̃
′
l)
′|C,D, σ2

α, σ
2
β, ω, y,X ∼ N(bl, Bl), (29)

with bl = BlZ
′
lζl, Bl = (Z ′lΩlZl+Vb)

−1, where Vb is a diagonal matrix with σ−2
α as the first∑J

j=2 1[Cj = l] elements and σ−2
β as the final K∗ elements on the diagonal. The vector

α̃l contains the intercepts αj for all j with Cj = l, and βj = β̃l for all j with Cj = l.

Second, the cluster coefficients for the empty outcome clusters are sampled from the
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base distribution:

β̃′l|C,D, σ2
β ∼ N(0, σ2

βI), (30)

for all empty outcome clusters l.

Third, the coefficients corresponding to the empty explanatory clusters are also sam-

pled from the base distribution

κ̃lk|C,D, σ2
β ∼ N(0, σ2

β), (31)

for all outcome clusters l and all empty explanatory clusters k.

A.3.4 Sample the classification variables C

Sample the classification variables of the outcome categories as

Cj|q, α, β̃, D, y,X ∼
LJ∑
l=1

πljδl, (32)

for j = 2, . . . , J . The conditional cluster probability πlj is a function of the unconditional

cluster probability ql and the data likelihood:

(π1j, . . . , πLJ ,j) ∝
(
q1f(β̈j1), . . . , qLJ

f(β̈jLJ
)
)
, (33)

where the likelihood is defined as

f(β) = exp

(
N∑
i=1

J∑
j=1

I[yi = j]ηij − log

(
J∑
j=1

exp(ηij)

))
, (34)

with ηij = αj+x
′
iβj. If outcome category j is assigned to outcome cluster l, the parameter

matrix β equals

β̈jl = (β1, . . . , βj−1, β̃l, βj+1, . . . , βJ)′. (35)
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A.3.5 Sample cluster probabilities q and concentration parameter λJ

Sample the unconditional cluster probabilities for the outcome categories from q|C, λJ

according to

q1 = V ∗1 , ql = (1− V ∗1 )(1− V ∗2 ) . . . (1− V ∗l−1)V ∗l , for l = 2, . . . , LJ − 1,

where

V ∗l ∼ Beta

(
1 + rl, λJ +

LJ∑
k=l+1

rk

)
, l = 1, . . . , LJ − 1, (36)

with rl the number of values in C which equal l.

Sample the concentration parameter λJ according to

λJ |q, ηJ1, ηJ2 ∼ Gamma

(
LJ + ηJ1 − 1, ηJ2 −

LJ−1∑
l=1

log(1− V ∗l )

)
. (37)

A.3.6 Sample the classification variables D

Sample the classification variables of the explanatory categories as

Dk|p, α, β̃, C, y,X ∼
LK∑
l=1

ψlkδl, (38)

for k = 1, . . . , Kd. The conditional cluster probability ψlk is a function of the uncondi-

tional cluster probability pl and the data likelihood:

(ψ1k, . . . , ψLK ,k) ∝
(
p1f(β̈k1), . . . , pLK

f(β̈k,LK
)
)
, (39)

where the likelihood is defined in (34), and β̈kl is defined as the parameter matrix in case

explanatory category k is assigned to explanatory cluster l:

β̈kl = (γ, κ.1, . . . , κ.k−1, κ̃.l, κ.k+1, . . . , κ.Kd
). (40)
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A.3.7 Sample cluster probabilities p and concentration parameter λK

Sample the unconditional cluster probabilities for the explanatory categories p in the

same way as for q. Similarly, the concentration parameter for the explanatory categories

λK is sampled in the same way as for λJ .

A.3.8 Posterior simulation one-way clustering

For one-way clustering over outcome categories, we simply put all explanatory variables

in wi. The vector di remains empty, which means that we do not have to restructure the

dummy variables and sample their parameters κ̃ in Step 3, and ignore Step 6 and 7 of the

sample algorithm. On the other hand, when we only cluster parameters over explanatory

variables, we set LJ = J , C = (1, 2, . . . , J), and skip Steps 4 and 5.

A.4 Predictive distribution

We simulate from the predictive distribution of yi in iteration s of the sampler as

y
(s)
i ∼ Multinomial(1, φ

(s)
i ), (41)

where the probability vector φ
(s)
i has elements

φ
(s)
ij = P (y

(s)
i = j|xi) =

exp(η
(s)
ij )∑J

j=1 exp(η
(s)
ij )

, η
(s)
ij = α

(s)
j + γ̃

(s)′

C
(s)
j

wi +

Kd∑
k=1

κ̃
(s)

C
(s)
j ,D

(s)
k

dik,

where α
(s)
j , γ̃(s) and κ̃(s) are the parameter draws for αj, γ̃ and κ̃, and C

(s)
j and D

(s)
k are

the parameter draws for Cj and Dk in iteration s of the sampler.

B Numerical experiments

This appendix examines the practical implications of the parameter clustering methods

on simulated data. We estimate the two-way mixture model and compare the perfor-

mance to one-way mixture models that cluster over outcome categories or explanatory
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categories, and a standard multinomial logit model. We consider a data generating pro-

cess along the dimensions of the empirical application. Next, we study the sensitivity of

the results against an increase in the prior belief about the number of unique parameter

values, increasing model parameter prior variance, and the setting in which the number

of parameters is larger than the number of observations.

B.1 Set-up

The choice data are generated from a multinomial logit model with control variables

and one categorical explanatory variable. The outcome categories and the explanatory

categories both vary over five parameter clusters. The data generating process takes the

form

P (yi = j|xi) =
exp(ηij)∑J
j=1 exp(ηij)

, with ηij = αj + γ′jwi + κ′jdi, (42)

with j = 1, . . . , J , and i = 1, . . . , N+10, 000 where the final 10, 000 observations are used

for out-of-sample analysis. The vector wi includes four standard normally distributed

variables. The categorical dummies are drawn from a multinomial distribution

(di1, . . . , di,Kd
, di,Kd+1) ∼ Multinomial

(
pdi
Kd

, . . . ,
pdi
Kd

, 1− pdi
)
, (43)

where pdi = exp(wi1)
1+exp(wi1)

and di = (di1, . . . , di,Kd
).

We follow the dimensions of the empirical application and set the number of outcome

categories to J = 50 and the number of explanatory categories to Kd = 10. The intercepts

have the values α1 = 0, and αj ∼ U [−1, 1] sampled from a uniform distribution for

j = 2, . . . , 50. The outcome and explanatory categories are both clustered into five
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groups, with model parameter values equal to

β̃l =



γ̃l

κ̃l,1

κ̃l,2

κ̃l,3

κ̃l,4

κ̃l,5


=



(0 0 0 0 0 0 0 0 0)′ if l = 1,

(1 1 1 1 0 −2 −2 2 2)′ if l = 2,

(1 1 1 1 0 −1 1 −1 1)′ if l = 3,

(1 1 1 1 0 1 −1 1 −1)′ if l = 4,

(1 1 1 1 0 2 2 −2 −2)′ if l = 5,

(44)

where βj = (γ̃′Cj
, κ̃Cj ,D1 , . . . , κ̃Cj ,D10)

′ with

Cj =



1 if 1 ≤ j ≤ 10,

2 if 11 ≤ j ≤ 20,

3 if 21 ≤ j ≤ 30,

4 if 31 ≤ j ≤ 40,

5 if 41 ≤ j ≤ 50,

and Dk =



1 if k = 1, 2,

2 if k = 3, 4,

3 if k = 5, 6,

4 if k = 7, 8,

5 if k = 9, 10.

(45)

Table 1 specifies the dimensions of the simulated data and the prior distributions of

the model parameters for four different experiments. Experiment 1 estimates the models

on N = 4000 observations with the settings as discussed in Section 4. Experiments 2-4

are designed to examine the sensitivity against the settings in experiment 1. Experiment

2 sets the prior distributions of the concentration parameters according to the prior

belief that the mode of unique parameter values across outcome categories equals 20 and

across explanatory categories equals 8, instead of respectively 15 and 5 in Experiment

1. Experiment 3 increases the model parameter prior variance from σ2
β = 1 to σ2

β = 2.

Experiment 4 lets the number of parameters (735) exceed the number of observations

N = 400 instead of N = 4000.

Posterior results are based on 1,000,000 iterations of the Gibbs sampler, from which

the first 500,000 are discarded and we use a thinning value of 50.
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Table 1: Settings numerical experiments

Experiment Prior distribution λJ Prior distribution λK σ2
β N

1 Gamma(7.15× 20, 20) Gamma(3.47× 1, 1) 1 4000
2 Gamma(12.24× 20, 20) Gamma(15.10× 1, 1) 1 4000
3 Gamma(7.15× 20, 20) Gamma(3.47× 1, 1) 2 4000
4 Gamma(7.15× 20, 20) Gamma(3.47× 1, 1) 1 400

This table shows the differences between the numerical experiments in Appendix B.
Experiment 1 in the first row is the standard setup. The remaining rows show the
settings in the other experiments, with the differences between the experiments and
experiment 1 indicated by the gray cells.

B.2 Results

Figure 1 shows the posterior distributions of the number of unique parameter values

across outcome categories and explanatory categories in the two-way mixture model,

for experiment 1-4. The model substantially reduces the number of model parameters

in experiment 1: The posterior number of clusters for the fifty outcome categories is

tightly concentrated around five. The posterior distribution for the explanatory categories

is more diffuse, but still puts a substantial probability mass on the correct number of

clusters.

The posterior distributions in Figure 1 are not very sensitive to an increase in the

prior belief on the number of clusters, or an increase in the prior model variance. The

differences between the prior distributions on the number of clusters in experiment 1 and 2

is substantial, with way more probability mass on a large number of clusters in experiment

2. However, the posterior distribution in experiment 2 only slightly moves to the right

compared to the posterior distribution in experiment 1. The posterior distributions of

the number of clusters in experiment 3 are also similar to experiment 1. Both for the

outcome and explanatory categories, the distributions are less diffuse in experiment 3,

and the posterior for the explanatory categories puts more probability mass on small

numbers of clusters. Experiment 4 decreases the number of observations from 4000 in

experiment 1-3 to 400. This results in a more diffuse posterior across outcome categories,

and a posterior that does not find any variation across explanatory categories.

Table 2 shows the in- and out-of-sample log-score and hit-rate for experiments 1-4.
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Figure 1: Distribution of the number of unique parameter values
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This figure shows the prior distributions (gray lines) and posterior distribution in the two-way mixture
model (black lines) over the number of unique parameter values over outcome categories (left panel) and
explanatory categories (right panel). Section A.2 discusses these distributions.

The mixture models are compared to a standard multinomial logit model, and a naive

method, in which the category probabilities are calculated as percentage observed in the

data, and the category with the largest probability is always chosen. Two-way clustering

improves the out-of-sample log-score and hit-rate relative to the standard multinomial

logit model in each experiment. Moreover, two-way clustering also improves on these

metrics relative to one-way clustering across outcomes or dummies in each experiment.

Two-way clustering also performs well in-sample, outperforming standard MNL in ex-

periments 1-3, but is not improving in-sample upon the standard MNL in experiment 4.
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Table 2: Log-score and hit-rate for numerical experiments

clustering standard

sample metric two-way outcomes dummies MNL naive

Experiment 1: settings empirical application

in log-score -3.390 -3.386 -3.405 -3.419 -3.758
in hit-rate 0.085 0.086 0.085 0.084 0.054

out log-score -3.408 -3.422 -3.475 -3.512 -3.763
out hit-rate 0.090 0.090 0.085 0.081 0.051

Experiment 2: concentration parameters

in log-score -3.384 -3.391 -3.406 -3.419 -3.758
in hit-rate 0.087 0.087 0.085 0.084 0.054

out log-score -3.403 -3.422 -3.478 -3.512 -3.763
out hit-rate 0.091 0.088 0.086 0.081 0.051

Experiment 3: model parameters

in log-score -3.394 -3.421 -3.410 -3.413 -3.758
in hit-rate 0.090 0.088 0.084 0.081 0.054

out log-score -3.413 -3.448 -3.491 -3.525 -3.763
out hit-rate 0.090 0.088 0.084 0.079 0.051

Experiment 4: number of observations

in log-score -3.529 -3.579 -3.538 -3.446 -3.726
in hit-rate 0.078 0.065 0.068 0.080 0.058

out log-score -3.653 -3.730 -3.793 -3.760 -3.807
out hit-rate 0.065 0.044 0.053 0.059 0.051

This table shows in-sample and out-of-sample log-score and hit-rate for different
experiments, as defined in (16) and (17), respectively.

This may be explained by Figure 1. The posterior distributions of the number of clusters

are similar across experiments 1-3. In experiment 4, the posterior of the two-way mixture

model does not find any variation across explanatory categories. Table 2 shows that this

mainly affects the in-sample model fit.

Table 3 shows the mean squared error (MSE) of the posterior parameter draws and

the interquartile range (IQR) of the posterior parameter distributions for the different

models. Two-way clustering improves the MSE and IQR in experiment 1-3 compared

to one-way clustering and the standard MNL model. We find that two-way clustering

increases the MSE and decreases the IQR compared to standard MNL in experiment 4.

This suggests that a decrease in the variance of the parameter estimates is at the expense
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Table 3: Mean squared error and interquartile range for numerical experiments

clustering standard

experiment metric two-way outcomes dummies MNL

1 MSE 0.264 0.768 0.475 0.672
1 IQR 0.342 0.515 0.533 0.811

2 MSE 0.258 0.807 0.476 0.672
2 IQR 0.352 0.511 0.532 0.811

3 MSE 0.325 1.360 0.444 0.661
3 IQR 0.239 0.513 0.616 0.999

4 MSE 1.185 2.886 1.161 1.067
4 IQR 0.129 0.730 0.283 1.157

This table shows mean squared error (MSE) of the posterior draws and the
interquartile range (IQR) of the posterior parameter distributions, averaged
over all model parameters.

of an increase in bias.

The differences in performance of the two-way mixture model across experiments,

follow the posterior distributions of the number of clusters in Figure 1. These distribu-

tions are similar in experiment 1-2, as is the model fit and accuracy of the parameter

estimates as evaluated in Tables 2 and 3. The fact that the distributions are less diffuse

in experiment 3 is reflected in a lower IQR. The posterior distribution of the number of

clusters across explanatory categories in experiment 3 puts more probability mass on a

smaller number of clusters than five. This results in biased parameter estimates, which is

captured by an increase in MSE. Finally, the posterior distributions in Figure 1 for exper-

iment 4 have more uncertainty around the number of clusters across outcome categories,

and do not include the correct number of clusters across explanatory categories. This

results in worse predictive performance and a large MSE of the parameter estimates.

C Mixed logit model

Let yit be an observable random categorical variable, such that yit ∈ {1, 2, . . . , J}, with

J the number of choice alternatives, i = 1, . . . , N , with N the number of individuals, and

t = 1, . . . , T , with T the number of time periods. Let xit be a Kx-dimensional vector
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with explanatory variables that vary across individuals, and zitj an explanatory variable

that varies across individuals and choice alternatives. The probability that individual i

in time period t chooses alternative j is

P (yit = j|xit, zitj) =
exp(ηitj)∑J
j=1 exp(ηitj)

, (46)

where ηitj is a linear function of parameters for all j = 1, . . . , J ,

ηitj = αj + x′itβj + z′itjνij, (47)

with alternative-specific intercept αj, Kx-dimensional coefficient vector βj, and random

coefficients νij with νi1 = 0 and

νi = (νi2, . . . , νiJ)′ ∼ N(u,Q), (48)

where u is a (J − 1)-dimensional mean vector and Q a (J − 1)-dimensional covariance

matrix.

The multinomial logit model in (1) and (2) sets zitj equal to zero. As a result,

there is no correlation in the utilities across alternatives and the IIA property holds.

Nonzero zitj with a diagonal covariance matrixQ allow for restrictive substitution patterns

and hence do not impose IIA. If zitj is nonzero and the nondiagonal elements of Q are

nonzero, the utilities are allowed to be correlated across alternatives which allows for

general substitution patterns. Since J is large in our case, we model Q as a factor

covariance matrix: Q = ΛΛ′ + Ψ, with a (J − 1)-dimensional vector of factor loadings

Λ and a (J − 1)-dimensional diagonal covariance matrix Ψ. The prior distributions for

the additional parameters are u ∼ N(0J−1, σ
2
uIJ−1), Λ ∼ N(0J−1, σ

2
ΛIJ−1), and Ψ ∼

Inverse-Gamma(aΨ, bΨ).

Similar as in the multinomial logit model, (47) can be rewritten to

ηitj = αj + w′itγj +

Kd∑
k=1

κjkditk + z′itjνij, (49)
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and the two-way Dirichlet process prior for γj and κjk in (13) can be used.

C.1 Posterior simulation

The sampling steps for the mixed logit model with a two-way Dirichlet process prior are

similar as in Appendix A.3, with three main differences. First, on top of the initialization

steps in Appendix A.3, set u = 0J−1, Ψ = IJ−1, Λ = 0J−1, and νij = 0. Second, the

latent variables ωitj are now sampled as

ωitj|αj, β̃, C,D, νij, xit, zitj ∼ PG(1, ηitj), (50)

for all i = 1, . . . , N , t = 1, . . . , T , and j = 2, . . . , J .

Third, the coefficients are sampled as follows. Define y = (y′1, . . . , y
′
N)′ and X =

(x′1, . . . , x
′
N)′, with yi = (yi1, . . . , yiT )′ and xi = (x′i1, . . . , x

′
iT )′. Given D = (D1, . . . , DKd

),

define theK∗-dimensional vector x∗it = (w′it, d
∗
it
′)′, with d∗it = (

∑Kd

k=1 I[Dk = D∗1]ditk, . . . ,
∑Kd

k=1 I[Dk =

D∗md
]ditk)

′ where D∗ = {D∗1, . . . , D∗md
} denote the current md unique values of D. The

rows of the NT × K∗x regressor matrix X∗ equal the x∗it
′. For all nonempty outcome

clusters l,

β̃l|C,D, α, ν, σ2
β, ω, y,X, Z ∼ N(bl, Bl), (51)

with bl = BlX
∗′∑J

j=2 1[Cj = l](ζj + ωj �mj) and Bl = (
∑J

j=2 1[Cj = l]X∗′diag(ωj)X
∗ +

Vb)
−1, where the elements of the NT -dimensional vector ζj equal 1[yit = j] − 0.5, the

elements of the NT -dimensional vector ωj equal ωitj, and the elements of the NT -

dimensional vector mj equal log
∑

k 6=j exp ηitk − αj − z′itjνij. The NT -dimensional di-

agonal matrix diag(ωj) has the elements in ωj on the diagonal, and the K∗x-dimensional

diagonal matrix has σ−2
β on the diagonal. The coefficients corresponding to empty out-

come clusters and empty explanatory clusters are sampled from the base distribution as

in Appendix A.3.
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The alternative-specific intercepts αj are sampled as

αj|C,D, β̃, ν, σ2
α, ω, y,X, Z ∼ N(aj, Aj), (52)

with aj = Aj(
∑

it ζitj+ωitj(log
∑

k 6=j exp ηitk−x′itβj−z′itjνij)) and Aj = (
∑

it ωitj+σ
−2
α )−1.

The random coefficients νij are sampled as

νi|C,D, β̃, α, u,Q, ω, y,X, z ∼ N(vi, Vi), (53)

where vi = Vi(diag({
∑

t zitj(ζitj + ωitj(log
∑

k 6=j exp ηitk − x′itβj − αj))}Jj=2) + Q−1u) and

Vi = (diag({
∑

t ωitjz
2
itj}Jj=2) + Q−1)−1. The mean vector of the random coefficient is

samples as

u|ν,Q, σ2
u ∼N

(
m

M
,

1

M
Q

)
, (54)

where the elements of the (J − 1)-dimensional vector m equal
∑

i νij and M = N + σ−2
u .

Finally, Λ and Ψ in Q = ΛΛ′ + Ψ are sampled in a factor analysis model as discussed in,

for instance, Section 8.3.2 of Greenberg (2012).

The classification variables, cluster probabilities, and concentration parameters are

sampled along the lines of the steps in Appendix A.3.

C.2 Numerical experiment

The choice data are generated in the same way as in Appendix B, with two exceptions.

First, N = 1, 000 and T = 5. Second, (47) also includes zitj and νij, where zitj is a scalar

generated from a standard normal distribution. The random coefficients are generated

from (48) with u generated from a standard normal distribution, the diagonal elements

of Q equal 1, and the off-diagonal elements Qjk = (j − 1)(k − 1)/(J − 1)2.

The prior distributions of the concentration parameters are set according to the

prior belief that the mode of unique parameter values across outcome and explana-

tory categories equals 5, with the truncation levels equal to 10 and 11, respectively:
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Figure 2: Distribution of the number of unique parameter values in the mixed logit
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This figure shows the prior distribution (gray lines) and posterior distribution in the mixed logit model
(black lines) over the number of unique parameter values over outcome categories (left panel) and ex-
planatory categories (right panel).

λJ ∼ Gamma(1.31 × 2, 2) and λK ∼ Gamma(3.47 × 1, 1). The model parameter prior

variance equals σ2
α = σ2

β = 1. The prior distributions of the additional parameters equal

u ∼ N(0, I), Λ ∼ N(0, I), and Ψ ∼ Inverse-Gamma(5, 1).

Posterior results are based on 1,000,000 iterations of the Gibbs sampler, from which

the first 500,000 are discarded and we use a thinning value of 50.

C.3 Results

We assess the convergence of the MCMC sampler using two different diagnostics. First,

we test for convergence of the sampler by the Geweke (1992) t-test for the null hypothesis

of equality of the means computed from the first 20 percent and the last 40 percent of the

sample draws. We compute the variances of the means using the Newey and West (1987)

heteroskedasticity and autocorrelation robust variance estimator with a bandwidth of

four percent of the sample sizes. We reject for 12.4%, 5.3%, and 1.3% of all estimated

parameters in α, β, u, and Q the null-hypothesis, on a significance level of 10%, 5%, and

1% respectively.

Second, we analyze the inefficiency factors 1 + 2
∑∞

f=1 ρf , where ρf is the fth order

autocorrelation of the chain of draws for a specific parameter. We use the Bartlett kernel

as in Newey and West (1987) with a bandwidth of four percent of the sample draws. The

effective sample size for a parameter equals the number of samples S = 10, 000 divided by
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the corresponding inefficiency factor. The median, mean, and minimum effective sample

size equal 2,535, 3,389, and 353, respectively.

Next we analyse the results. Figure 2 shows the posterior distributions of the number

of unique parameter values across outcome categories and explanatory categories in the

mixed logit model. The model substantially reduces the number of model parameters,

with most probability mass on the number of clusters in the data generating process for

both the outcome and explanatory categories.

Figure 3: Posterior means of the parameters in the mixed logit
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The panels in this figure correspond to the posterior means of the alternative-specific intercepts αj , the
coefficients βjk, the means of the random coefficients uj , and the elements of the covariance matrix Q of
the random coefficients. The panels show the posterior means on the y-axis and the values in the data
generating process on the x-axis.

Figure 3 compares the parameter values in the data generating process against the cor-
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Figure 4: Posterior means of the random coefficients in the mixed logit
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This figure shows the random coefficients νij . The panels show the posterior means on the y-axis and
the values in the data generating process on the x-axis.

responding posterior mean estimates. The closer the circles lie to the 45 degree diagonal

line, the closer the posterior means are to the true parameter values. The alternative-

specific intercepts, the coefficients, and the means of the random coefficients are scattered

around the 45 degree line. The zero covariances and the variances in the covariance matrix

of the random coefficients seems to be slightly downward biased, which may be explained

by the fact that accurately estimating such a high-dimensional covariance matrix is chal-

lenging (Geweke et al., 1994). The random coefficients in Figure 4 are close to the 45

degree line, but especially larger values show some shrinkage towards zero.
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D Empirical application

D.1 Overview categorical dependent variable

This appendix shows the countries within each holiday destination choice category in

Figure 1 in Section 4.

1 France 18 Eastern Europe 35 Western Asia

2 Iceland 19 Portugal 36 Southern Asia

3 Norway 20 Spain 37 China

4 Sweden /Finland 21 Italy 38 Eastern Asia

5 Denmark 22 Malta 39 Indonesia

6 Ireland 23 Croatia 40 Thailand

7 United Kingdom 24 Greece 41 Southeastern Asia

8 Belgium 25 Southern Europe 42 Australia/ New Zealand

9 Luxembourg 26 Morocco 43 Canada

10 Germany 27 Tunisia 44 United States

11 Switzerland 28 Egypt 45 Netherlands Antilles

12 Austria 29 Eastern Africa 46 Caribbean

13 Poland 30 West Africa 47 Mexico

14 Czech Republic 31 Southern Africa 48 Central America

15 Hungary 32 Cyprus 49 Southern America

16 Romania 33 Israel

17 Bulgaria 34 Turkey
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Table 4: Descriptive statistics holiday spells per holiday destination

total estimation

j destinations min median mean max min median mean max

1 France 2 13 14.213 85 8 15 17.554 85
2 Iceland 4 12 12.217 27 9 14.5 15.188 27
3 Norway 3 14 14.134 37 8 15 15.789 37
4 Sweden/Finland 3 11 15.507 56 8 17.5 20.460 56
5 Denmark 2 8 9.638 29 8 11 12.943 29
6 Ireland 2 10 9.596 19 8 11 11.889 19
7 United Kingdom 2 5 7.649 45 8 11 13.191 45
8 Belgium 2 4 5.452 44 8 9 11.348 44
9 Luxembourg 2 7 8.744 23 8 13 13.514 23
10 Germany 2 5 7.046 78 8 10 12.869 78
11 Switzerland 3 9 11.824 51 8 10 13.805 51
12 Austria 3 9 10.836 37 8 9 11.851 37
13 Poland 3 8 9.083 27 8 10 13.038 27
14 Czech Republic 3 9 10.194 33 8 13.5 13.775 33
15 Hungary 3 11 14.347 66 8 18 19.806 66
16 Romania 3 11.5 13.143 48 8 12.5 16.600 48
17 Bulgaria 4 10 9.769 15 8 11 10.636 15
18 Eastern Europe 3 10 11.464 42 8 12 14.150 42
19 Portugal 3 9 12.250 64 8 12 14.625 64
20 Spain 2 10 13.202 89 8 12 14.660 89
21 Italy 2 11 12.623 67 8 14 14.958 67
22 Malta 4 8 8.476 15 8 8 9.438 15
23 Croatia 7 16 18.041 71 8 16 18.194 71
24 Greece 4 11 12.061 55 8 11 12.284 55
25 Southern Europe 8 12 17.258 66 8 12 17.258 66
26 Morocco 4 9 11.000 26 8 9.5 12.773 26
27 Tunisia 8 8.5 12.688 41 8 8.5 12.688 41
28 Egypt 7 9 10.729 17 8 9 10.793 17
29 Eastern Africa 5 17.5 18.182 47 9 19 18.810 47
30 West Africa 7 14 12.621 22 8 14.5 12.821 22
31 Southern Africa 5 21 19.375 38 9 21 20.000 38
32 Cyprus 8 10 11.412 20 8 10 11.412 20
33 Israel 8 13 15.818 29 8 13 15.818 29
34 Turkey 4 9.5 10.808 72 8 10 11.192 72
35 Western Asia 2 8.5 8.786 20 8 9 10.632 20
36 Southern Asia 9 16.5 17.556 26 9 16.5 17.556 26
37 China 6 22 22.214 51 10 22 23.462 51
38 Eastern Asia 9 19 19.500 31 9 19 19.500 31
39 Indonesia 10 23 24.128 84 10 23 24.128 84
40 Thailand 3 18 18.870 44 10 19 19.591 44
41 Southeastern Asia 3 21 22.258 69 11 22 24.107 69
42 Australia 15 36 37.737 67 15 36 37.737 67
43 Canada 8 22 21.744 52 8 22 21.744 52
44 United States 4 16 17.260 62 8 17 18.992 62
45 Netherlands Antilles 5 14.5 15.106 56 8 15 15.556 56
46 Caribbean 2 16 15.667 30 8 16 16.350 30
47 Mexico 4 14.5 15.357 24 11 15 16.231 24
48 Central America 14 21 20.615 32 14 21 20.615 32
49 Southern America 6 21 20.310 31 9 22 21.370 31

all 2 6 8.818 89 8 13 14.835 89

This table shows the minimum, median, mean, and maximum holiday spell for each holiday
destination, in the total data sample and the sample used for estimation.
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The following table shows which countries belong to which holiday region.

Eastern Europe Benin Southern Asia Haiti

Belarus Burkina Faso Afghanistan Jamaica

Moldova Cape Verde Bangladesh Martinique

Ukraine Cote dIvoire Bhutan Montserrat

Slovakia Ghana Iran Puerto Rico

Russia Guinea Maldives Saint Barthelemy

Southern Europe Guinea-Bissau Nepal Saint Kitts and Nevis

Slovenia Liberia Pakistan Saint Lucia

Albania Mali India Saint Martin

Bosnia and Herzegovina Mauritania Sri Lanka Saint Vincent and the Grenadines

Gibraltar Niger Eastern Asia Trinidad and Tobago

Vatican City Nigeria Hong Kong Turks and Caicos Islands

Montenegro Saint Helena Japan United States Virgin Islands

San Marino Senegal Korea Central America

Serbia Sierra Leone Macau Belize

Macedonia Togo Mongolia Costa Rica

Eastern Africa Southern Africa Southeastern Asia El Salvador

Kenya South Africa Brunei Guatemala

Burundi Botswana Burma Honduras

Comoros Lesotho Cambodia Mexico

Djibouti Namibia Laos Nicaragua

Eritrea Swaziland Philippines Panama

Ethiopia Western Asia Singapore Southern America

Madagascar Jordan Timor-Leste Brazil

Malawi Armenia Viet Nam Argentina

Mauritius Azerbaijan Malaysia Bolivia

Mayotte Bahrain Caribbean Chile

Mozambique Georgia Anguilla Colombia

Reunion Iraq Antigua and Barbuda Ecuador

Rwanda Kuwait Aruba Falkland Islands

Seychelles Lebanon Bahamas French Guiana

Somalia Oman Barbados Guyana

Uganda Palestine British Virgin Islands Paraguay

Tanzania Qatar Cayman Islands Peru

Zambia Saudi Arabia Cuba Suriname

Zimbabwe Syrian Dominica Uruguay

West Africa United Arab Emirates Grenada

Gambia Yemen Guadeloupe

Table 5: Frequency counts for the number of observed holidays per household

observations 1 2 3 4 5 6 7 8

frequency 2159 875 224 63 8 3 0 2

This table shows the frequency counts for the number of

observed holidays per household in the 4907 observations

used in the data in the empirical application.
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D.2 Overview control variables

The survey contained a multiple choice question with 28 income categories. Table 6

shows the income categories, which are transformed to a continuous variable by taking the

logarithm of the upper limit of each income category. Moving holiday accommodations

include tents, caravans, campers, and cabin boats. Fixed holiday accommodations are

defined as holiday homes or a mobile home with a fixed location. The sample is divided

in five social classes, captured by four dummy variables. The upper social class A is the

reference category, B and C represent the middle class, and D is the lower social class.

Figure 5 shows the frequency counts for the binary dummies.

Table 6: Gross annual income of household categories

< 4.600 14.300 - 15.400 38.800 - 51.300 181.300 - 206.400

4.600 - 6.300 15.400 - 17.100 51.300 - 65.000 206.400 - 232.600

6.300 - 8.000 17.100 - 20.000 65.000 - 77.500 232.600 - 258.900

8.000 - 9.100 20.000 - 23.400 77.500 - 103.800 258.900 - 284.500

9.100 - 10.800 23.400 - 26.200 103.800 - 129.400 284.500 - 310.700

10.800 - 12.500 26.200 - 32.500 129.400 - 155.100 310.700 <

12.500 - 14.300 32.500 - 38.800 155.100 - 181.300 no response

This table shows the 28 categories of gross annual income of a household.
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Figure 5: Frequency counts dummy control variables
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This figure shows the frequency counts for the explanatory control variables. The frequencies represent
the number of observations that are coded as 1 in the binary dummies.

D.3 Convergence diagnostics

We assess the convergence of the MCMC sampler in the two-way mixture model in the

empirical application using three different diagnostics. First, we use the Gelman–Rubin

diagnostic to analyse the difference between three Markov chains with a different ran-

dom initialization (Gelman and Rubin, 1992). This diagnostic compares the estimated

between-chains and within-chain variances for each model parameter. Brooks and Gel-

man (1998) suggest that all chains have converged if the Gelman–Rubin diagnostic is

smaller than 1.2 for all model parameters. The largest value we find is 1.018.

Second, we test for convergence of the sampler by the Geweke (1992) t-test for the

null hypothesis of equality of the means computed from the first 20 percent and the last

40 percent of the sample draws. We compute the variances of the means using the Newey

and West (1987) heteroskedasticity and autocorrelation robust variance estimator with

a bandwidth of four percent of the sample sizes. We reject for 10.3%, 5.6%, and 1.2%

of the 960 estimated parameters the null-hypothesis, on a significance level of 10%, 5%,

and 1% respectively.

Third, we analyze the autorrelation functions of the model parameters displayed in

Figure 6. We summarize the autocorrelations per model parameter with the inefficiency

factors 1 + 2
∑∞

f=1 ρf , where ρf is the fth order autocorrelation of the chain of draws for
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Figure 6: Autocorrelation functions of all model parameters

Figure 7: Inefficiency factors of all model parameters

a specific parameter. We use the Bartlett kernel as in Newey and West (1987) with a

bandwidth of four percent of the sample draws. The effective sample size for a parameter

equals the number of samples S = 10, 000 divided by the corresponding inefficiency factor.

Figure 7 shows that the effective sample size is larger than 1,000 for more than 75.9% of

the model parameters.
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D.4 Additional empirical results

Table 7: Model evaluation p-values

clustering

two-way holiday household

hit-rate
in 0.797 1.000 0.932

out 0.780 0.867 0.867

log-score
in 0.000 0.000 0.000

out 0.022 0.183 0.174

This table shows the p-values for the tests on the dif-

ference of the hit-rates and the difference of the log-

scores between the method indicated by the column

label and a standard MNL. See Table 2 for details.
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Figure 8: One-way pairwise cluster probabilities for the holiday destinations
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This figure shows the posterior probabilities that the holiday destination at a specific row is in the same
cluster as the holiday destination at a specific column in the one-way mixture model across holiday
destinations. The posterior probabilities range from zero (white) to one (black).

Figure 9: Posterior odds ratios in the one-way mixture model
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This figure shows the posterior odds ratios for all combinations of the holiday destinations Turkey, Greece,
Netherlands Antilles and United States, for four different household categories. The control variables are
set to mean log income, not retired or student, no fixed or moving holiday accommodation, and social
class A. The posterior odds are from the one-way holiday destination mixture model.
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