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This version: January 2023. 
 
This Matlab code replicates the results in all the Tables in Qu and 
Tkachenko (2023): "Using Arbitrary Precision Arithmetic to Sharpen 
Identification Analysis for DSGE Models". All folders and subfolders 
must be added to Matlab path for all the scripts to work. They have 
been tested on Matlab version 2016b.  
Performing computations in arbitrary precision and viewing files 
containing such results requires an installed Advanpix Multiprecision 
Computing Toolbox (free 1-week trial available at www.advanpix.com ). 
 
All queries regarding the code can be directed to Denis Tkachenko 
(denis.tkachenko@nus.edu.sg). 
 
The replication code is also deposited at: 
https://github.com/tkatched/Identification-using-Arbitrary-Precision-
Arithmetic  
 
and may be updated in the future. 
 
Note that using different Matlab and Advanpix toolbox versions, as 
well as different PC hardware and OS, may produce slightly different 
values for the tiny numbers that are supposed to be zero from those 
reported in the paper (i.e., numbers that are shrinking to zero as 
precision improves) – this is normal and a known fact in the 
numerical analysis literature.   
 
This readme file is structured as follows. 
 
First, we give some general information on how the replication files 
are organized. 
 
Finally, we append a discussion on optimization algorithms (the 
genetic algorithm, the particle swarm algorithm, and the multistart 
algorithm). There, we highlight what aspects of the specifications 
are important for convergence and computational time. 
 
 
********************** 
***GENERAL INFORMATION 
********************** 
 
Most importantly, the directories ‘Section X_Y_Z’ contain subfolders 
with the scripts and necessary section-specific subroutines 
reproducing results discussed in the paper in the particular section. 

http://www.advanpix.com
mailto:(denis.tkachenko@nus.edu.sg).
https://github.com/tkatched/Identification-using-Arbitrary-Precision-
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E.g., the folder Section_5_2 reproduces all results discussed in 
Section 5.2 of the paper in the order they appear, with the main 
script being “Section_5_2.m”. For ease of following results, the 
specific analyses are called via respective scripts. The scripts may 
have path dependency (e.g., previous results need to be obtained and 
loaded), however, all can be run independently if the “Output_files” 
folder is on the Matlab path. The comments within the main section of 
the replication files and the scripts there as well as short 
readme.txt files within each section clarify their contents and 
purpose. Finally, the “Output_Files” directory contains all the 
results as generated by the replications scripts, which enable 
examining all the relevant results and running any separate script 
independently. Due to large size (around 300MB), it is provided as a 
separate zip file. 
 
The directory ‘Model files’ contains files that set up and solve the 
linearized version of the respective model, both in double and 
quadruple precision.  
 
The directory 'General' contains Chris Sims (2002) gensys and 
csmiwnel routines as well as the gensys code modified to allow 
indeterminacy following the development in Lubik and Schorfheide 
(2004). It also contains the general scripts that perform Genetic 
algorithm and Particle Swarm optimization, as well as additional 
local optimization using MultiStart when minimizing the Kullback-
Leibler (KL) distance after taking the problem inputs. See GA_optim.m 
and PSO_otpim.m for more details. 
 
The directory “Leeper91_identification” contains the files pertaining 
to computing local identification conditions, objective functions, 
and constraints for global identification for the small scale 
monetary-fiscal interactions model. 
 
The directory “Leeperetal17_identification” contains the files 
pertaining to computing local identification conditions, objective 
functions, and constraints for global identification for the medium 
scale monetary-fiscal interactions model. The model solution code is 
based on the Matlab code accompanying Leeper et al. (2017). 
 
The directory “SGU2012_identification” contains the files pertaining 
to computing local identification conditions, objective functions, 
and constraints for global identification for the medium scale model 
with news shocks from Schmitt-Grohé and Uribe (2012).  The model 
solution code is based on the Fortran code of Herbst and Schorfheide 
(2014). We also rely on the Chahrour and Jurado (2016) Matlab code 
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for the example of observational equivalence between news and noise 
model structures. 
 
 
The rest of the auxiliary scripts and subroutines are placed within 
the section folders. Inside each subfolder, where possible, the files 
are split into “Double” and “MP” subfolders to separate the code that 
computes in double precision only or arbitrary precision only. Some 
scripts have both types of computation (e.g., the local 
identification analyses in Sections 5.2 and 6.1). 
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******************************************************************* 
***GENETIC ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION 
******************************************************************* 
 
The Genetic algorithm belongs to the class of evolutionary 
optimization algorithms. The optimization begins with usually a 
randomly drawn "population" of individuals (candidate solutions). The 
objective function value is evaluated for each individual and a group 
of "parents" is selected based on their fitness. Then, a fraction of 
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parents is randomly either combined (crossover operation) or mutated 
via some random perturbation (mutation operation) to produce the next 
generation to be used in the next iteration. A small fraction of 
individuals with high fitness values are carried over unchanged 
(elite children). This process of recombining and mutating the 
population of candidate solutions continues until specified stop 
criteria are met. The algorithm implementation in Matlab is 
parallelized so computation time can be reduced with multiple cores. 
 
The main options for the algorithm in the code are: 
 
- Population size. Larger populations allow GA to better explore the 
parameter space while increasing the computational burden at the same 
time. There are no formal rules derived as to how the population size 
should be set. One popular rule of thumb in the evolutionary 
computation literature is to set the population size roughly to 10 
times the dimension of the problem. Experimenting with our problems, 
we found that population sizes of 100 for small scale models and 300 
for medium scale model produce a balance between convergence 
robustness and computational cost. 
 
- The maximum number of generations. This is one of the stopping 
criteria and determines the maximum number of times a population is 
evolved. We set this for 1000 for all cases. The rationale is that GA 
has good global exploration ability but low local exploitation 
ability. We found that 1000 generations is typically enough to 
pinpoint promising regions of parameter space where the minimum can 
be located. While in principle GA can be allowed to run until the 
global minimum is reached, at a certain point it becomes inefficient 
to use GA for what effectively becomes a local search. This is 
especially apparent in unconstrained problems such as those 
considered in Tables 4 and 13 - GA can go through several thousand 
generations making very small improvements and the computation time 
can be substantial. By limiting the GA run to 1000 generations and 
using the MultiStart algorithm on points from its final population 
produces one seems to achieve a good balance between GA's global 
exploration and the efficiency of the derivative-based local solver 
in the second stage (note that the KL distance is typically 
infinitely differentiable). 
 
- Elite Count. This is the number of so-called "elite" individuals 
that continue on without crossover or mutation. Setting it to a 
positive number guarantees that the algorithm will improve on the 
next iteration. It is advised to keep this parameter low to prevent a 
few solution points dominating the population and making the search 
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less efficient. We find that assigning a small number, such as 3, 
works well in cases of both the small and medium scale models. Note 
that originally the default Matlab option for this parameter was 2, 
and was changed to 5% of the population in more recent releases. We 
find that using fewer elite individuals than 5% of the population in 
our examples improves both the speed and the efficiency of the search. 
 
- Stall Generation Limit. This is another stopping criterion, which 
halts the algorithm if no improvement has been made over a certain 
number of generations. We set this parameter to 50. We also 
experimented with setting it to 100. The results are not sensitive. 
The tradeoff is a standard one: setting it too low may result in the 
algorithm stopping in a locally flat region that is not a global 
optimum, while setting it too high may cause the algorithm to go for 
more generations than necessary which increases computation time. 
 
- Initial population. We let the initial population be randomly 
initialized via uniform draws within parameter bounds. This way all 
regions of the parameter space are treated equally. If the researcher 
possesses knowledge about possible regions where the global optimum 
is expected, particular points from those regions can be added to 
potentially increase the speed of the search. However, this may bias 
the search in a particular direction and miss the global optimum. 
 
- Objective function tolerance level. We set it to 1E-10 throughout. 
We also experimented with setting it to 1E-12. Setting it to a low 
value may increase the computational time, but is often worthwhile to 
avoid premature termination of the code.  
 
- Constraint handling method. From version 2014b onwards, Matlab 
provides two options for handling inequality constraints: "auglag" 
and "penalty". The "penalty" method is preferred as it is often 
faster and also allows us to easily control the number of generations. 
The "auglag" option uses the Augmented Lagrangian algorithm that 
creates a sequence of subproblems using the inequality constraints. 
After a subproblem is minimized to desired accuracy, the outer 
problem result is updated. Thus, the effective number of generations 
(i.e., iterations of the outer problem) is not easily predictable. 
 
There are other tuning parameters of the algorithm, such as mutation 
and crossover fractions. We experimented with changing their values 
and did not find a consistent improvement over the Matlab default 
values. Therefore, we do not provide options for changing them within 
the code. For more details, one can consult Matlab documentation for 
the Global Optimization Toolbox. 
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********************************************************************* 
**PARTICLE SWARM ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION 
********************************************************************* 
 
Particle Swarm algorithm is similar to GA in that it is an iterative 
stochastic search procedure that involves a population (in PSO 
language - swarm) of candidate solutions (particles). The key 
difference of PSO from GA is that the particles have memory and can 
communicate with each other and thus can change the direction of the 
search. There are many variations of the PSO algorithm in the 
literature. The one implemented by Matlab is as follows. Similarly to 
GA, the algorithm initializes the swarm of a specified size randomly 
via uniform draws from within the parameter bounds. However, the 
updating scheme is different. Particles move through the parameter 
space according to the following equations: 
 
v_j(t + 1) = w*v_j(t) + c1*R1(pbest_j - theta_j(t)) + c2*R2(nbest_j - theta_j(t)), 
theta_j(t + 1) = theta_j(t) + v_j(t + 1), 

 
where theta_j(t) stand for particle j at iteration t, v_j(t) is 
particle's velocity at iteration t, pbest_j  is the parameter vector 
that achieved the best function value so far for particle j, nbest_j 
is the best parameter so far in the current neighborhood of particle 
j. The parameter w is called the inertia weight, c1 and c2 are called 
cognitive and social weights respectively, and R1 and R2 are randomly 
drawn vectors, each element being a draw from a uniform [0,1] 
distribution. It can be seen that the updating of candidate solution 
consists of three components: 1) inertia (maintaining the same step 
size in updating); 2) cognitive attraction (moving towards personal 
best achieved so far); 3) social attraction (moving towards the best 
solution obtained over all particles in the neighborhood). The 
parameters w, c1, and c2 control the relative importance of the three 
components. Matlab default values for c1 and c2 are set the same at 
1.49.The inertia parameter w is allowed to vary with iterations in 
MATLAB. The literature in the field suggests that starting out with 
higher inertia and progressively lowering it leads to better 
performance. Namely, starting out with a value in the range [0.9,1.2] 
and going down progressively to something like 0.1 gives good results. 
The intuition is that the high inertia weight initially throws the 
particles around a lot creating explosive growth in swarm diversity 
and thus good exploration of the parameter space. Then, as promising 
parts of the parameter space are found, lowering the inertia weight 
allows the particles to concentrate on a more local search instead of 
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"flying over" the minimum if the inertia weight were still high. 
MATLAB has an adaptive way to change the inertia weight: it blows up 
the weight if there are fewer than two stall iterations to promote 
further exploration, and cuts down the weight when the algorithm is 
stalling in order to conduct a more local search. The inertia weight 
is kept within the bounds specified by the user (option InertiaRange). 
The default is [0.1,1.1]. At the start, MATLAB initializes the 
inertia weight to the upper bound of the specified range in order to 
have maximum exploration ability. The neighborhood of a particle is 
determined randomly and its size, specified as a fraction of the 
total swarm size, is adaptive: it shrinks when a better point is 
found, otherwise grows all the way up to the whole swarm. Using the 
neighborhood's best rather than the swarm's best for the social 
aspect of updating solutions proved to provide better performance and 
prevent premature convergence. Intuitively, by slowing down the 
exchange of information between the particles via neighborhood, they 
do not rush toward the swarm's best, but rather have a chance to 
explore other promising areas of the parameter space. The algorithm 
stops when some specified stopping criterion is reached. The 
algorithm implementation in Matlab is parallelized so computation 
time can be reduced with multiple cores. 
 
 
The main options for the algorithm in the code are: 
 
- Swarm size. Similar to GA, a larger swarm size allows the algorithm 
to better explore the parameter space, while increasing the 
computational burden at the same time. There do not seem to be 
extensive guidelines for setting swarm size in the relevant 
literature, rather, it is usually problem specific. Balancing the 
performance/computation time tradeoff, we set the swarm size of 300 
for all applications of small scale models, 600 for unconstrained 
optimization in the medium scale model, and 1000 for constrained 
cases of the medium scale model.  
 
- The maximum number of iterations. This is one of the stopping 
criteria and determines the maximum number of times a swarm is 
updated. We found that 1000 generations are typically enough to 
pinpoint promising regions of parameter space where the minimum can 
be located. In principle, the number of iterations can be increased 
to let the algorithm search for a global minimum by itself, however, 
in some especially unconstrained problems such as those considered in 
Tables 4 and 13, it can go through as many as 5000 iterations making 
very small improvements thus making computation time several times 
longer than the PSO + Multistart procedure implemented in the code. 
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By limiting the PSO run to 1000 iterations and using the MultiStart 
algorithm on points from its final swarm seems to achieve a good 
balance between PSO global exploration and the efficiency of 
derivative-based local solver in the second stage (note that the KL 
distance is typically infinitely differentiable). 
 
- Stall iteration limit. This is another stopping criterion, which 
halts the algorithm if no improvement has been made over a certain 
number of iterations. We set this parameter to 100. This setting is 
higher than an analogous one for GA since we find that PSO can more 
effectively escape a flat region even after many stall iterations due 
to the adaptive nature of updating candidate solutions. 
 
 - Initial swarm. We let the initial swarm be randomly initialized 
via uniform draws within parameter bounds. This way all regions of 
the parameter space are treated equally. If the researcher possesses 
knowledge about possible regions where the global optimum is expected, 
particular points from those regions can be added to potentially 
increase the speed of the search. However, this may bias the search 
in a particular direction and miss the global optimum. 
 
 
- Objective function tolerance level. We set the tolerance level at 
1E-6 throughout for small scale models and 1e-10 for medium scale 
model. 
 
- Constraint handling method. Matlab implementation of PSO only 
provides boundary constraint handling. Since we have additional 
inequality constraints in some cases, we modify the objective 
function to apply a flat penalty in case a candidate solution point 
violates the constraints. We found this method works as well or 
better than setting penalty level proportional to violations of 
feasibility. 
 
- Minimum Neighborhood Fraction. This is the parameter that 
determines the minimum neighborhood size that a particle communicates 
with as a fraction of the total swarm. We found this to be a very 
important tuning parameter. Setting it to an extreme value of 1 (i.e., 
each particle immediately learns the swarm's best solution) seems to 
produce premature convergence even when swarm size is relatively 
large. We found that lowering this parameter to 0.1 produces good 
results, as, intuitively, restricting communications between 
particles prolongs exploration of the parameter space. Recall that 
this parameter only controls the lower bound of the neighborhood size. 
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Matlab adaptively enlarges or shrinks the neighborhood depending on 
the search progress. 
 
- Retrieving the swarm. Unlike GA, Matlab does not automatically 
report the final swarm of particles. In order to retrieve it, we 
utilize the output function psout.m located in the General folder. It 
saves the swarms after each 200 iterations. Although not necessary 
here (we use the final swarm only), this can be helpful in cases 
where the final swarm could be very homogeneous, so starting the 
local optimizer from points in an earlier swarm could produce better 
results.     
 
As is evident from the brief description above, there are other 
potential tuning parameters, such as inertia weight range and 
coefficients on social and cognitive attraction parts. We found that 
results are not as sensitive to modifying these as they are to 
changing swarm or minimum neighborhood size and that Matlab defaults 
perform well and seem to correspond to best practices in the relevant 
literature. Therefore, these parameters are left at default values.  
 
For more details, consult Matlab documentation for the Global 
Optimization Toolbox. For an overview and the recent standard 
practice of PSO optimization, see Clerc (2012): "Standard Particle 
Swarm Optimization" 
(http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf).  
 
 
************************************************************************** 
***MULTISTART ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION 
************************************************************************** 
 
Multistart is not a separate algorithm, but rather a conveniently 
packaged suite of local optimization routines that allows us to 
conduct local searches using a fairly large number of initial values. 
We choose the Active-Set local search algorithm to use with 
Multistart based on performance. 
 
Multistart is invoked at the second stage of optimization, after GA 
or PSO population or swarm complete 1000 iterations or another 
stopping criterion is triggered. We then select the first 50 points 
from the respective final population/swarm, and additionally 10 
equally spaced points from the rest of the population/swarm. For 
added robustness, we generate 50 random starting points within 
parameter bounds and run the local search from the 110 specified 
points. Due to the parallel evaluation of multiple local solvers, 

http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf).
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such a procedure is computationally feasible and takes a few minutes 
for small scale models and a few hours for a medium scale model on a 
modern desktop computer with 8 cores.   
 
The options here are standard options for the Active-Set local 
optimization algorithm: 
 
- The maximum number of iterations. This option is set to 1000 in the 
code. 
 
- The maximum number of function evaluations. This is set to 10000 in 
the code. For more challenging problems, i.e., constrained 
minimization of KL distance between medium scale models, we set this 
value to 20000. 
 
- Tolerance level. This is set 1E-10. 
 


