
1

This version: January 2023.

This Matlab code replicates the results in all the Tables in Qu and
Tkachenko (2023): "Using Arbitrary Precision Arithmetic to Sharpen
Identification Analysis for DSGE Models". All folders and subfolders
must be added to Matlab path for all the scripts to work. They have
been tested on Matlab version 2016b.
Performing computations in arbitrary precision and viewing files
containing such results requires an installed Advanpix Multiprecision
Computing Toolbox (free 1-week trial available at www.advanpix.com).

All queries regarding the code can be directed to Denis Tkachenko
(denis.tkachenko@nus.edu.sg).

The replication code is also deposited at:
https://github.com/tkatched/Identification-using-Arbitrary-Precision-
Arithmetic

and may be updated in the future.

Note that using different Matlab and Advanpix toolbox versions, as
well as different PC hardware and OS, may produce slightly different
values for the tiny numbers that are supposed to be zero from those
reported in the paper (i.e., numbers that are shrinking to zero as
precision improves) – this is normal and a known fact in the
numerical analysis literature.

This readme file is structured as follows.

First, we give some general information on how the replication files
are organized.

Finally, we append a discussion on optimization algorithms (the
genetic algorithm, the particle swarm algorithm, and the multistart
algorithm). There, we highlight what aspects of the specifications
are important for convergence and computational time.

***GENERAL INFORMATION

Most importantly, the directories ‘Section X_Y_Z’ contain subfolders
with the scripts and necessary section-specific subroutines
reproducing results discussed in the paper in the particular section.

http://www.advanpix.com
mailto:(denis.tkachenko@nus.edu.sg).
https://github.com/tkatched/Identification-using-Arbitrary-Precision-

2

E.g., the folder Section_5_2 reproduces all results discussed in
Section 5.2 of the paper in the order they appear, with the main
script being “Section_5_2.m”. For ease of following results, the
specific analyses are called via respective scripts. The scripts may
have path dependency (e.g., previous results need to be obtained and
loaded), however, all can be run independently if the “Output_files”
folder is on the Matlab path. The comments within the main section of
the replication files and the scripts there as well as short
readme.txt files within each section clarify their contents and
purpose. Finally, the “Output_Files” directory contains all the
results as generated by the replications scripts, which enable
examining all the relevant results and running any separate script
independently. Due to large size (around 300MB), it is provided as a
separate zip file.

The directory ‘Model files’ contains files that set up and solve the
linearized version of the respective model, both in double and
quadruple precision.

The directory 'General' contains Chris Sims (2002) gensys and
csmiwnel routines as well as the gensys code modified to allow
indeterminacy following the development in Lubik and Schorfheide
(2004). It also contains the general scripts that perform Genetic
algorithm and Particle Swarm optimization, as well as additional
local optimization using MultiStart when minimizing the Kullback-
Leibler (KL) distance after taking the problem inputs. See GA_optim.m
and PSO_otpim.m for more details.

The directory “Leeper91_identification” contains the files pertaining
to computing local identification conditions, objective functions,
and constraints for global identification for the small scale
monetary-fiscal interactions model.

The directory “Leeperetal17_identification” contains the files
pertaining to computing local identification conditions, objective
functions, and constraints for global identification for the medium
scale monetary-fiscal interactions model. The model solution code is
based on the Matlab code accompanying Leeper et al. (2017).

The directory “SGU2012_identification” contains the files pertaining
to computing local identification conditions, objective functions,
and constraints for global identification for the medium scale model
with news shocks from Schmitt-Grohé and Uribe (2012). The model
solution code is based on the Fortran code of Herbst and Schorfheide
(2014). We also rely on the Chahrour and Jurado (2016) Matlab code

3

for the example of observational equivalence between news and noise
model structures.

The rest of the auxiliary scripts and subroutines are placed within
the section folders. Inside each subfolder, where possible, the files
are split into “Double” and “MP” subfolders to separate the code that
computes in double precision only or arbitrary precision only. Some
scripts have both types of computation (e.g., the local
identification analyses in Sections 5.2 and 6.1).

References:

Chahrour, R., and K. Jurado (2018): “News or Noise? The Missing Link”,
American Economic Review, 108(7), 1702-36.

Herbst, E. P., and F. Schorfheide (2014): “Sequential Monte Carlo
Sampling For DSGE Models”, Journal of Applied Econometrics, 29, 1073-
1098.

Leeper, E. M., N. Traum, and T. B. Walker (2017): “Clearing Up the Fiscal
Multiplier Morass”, American Economic Review, 107, 2409-2454.

Lubik, T., and F. Schorfheide (2004): “Testing for Indeterminacy: An
Application to U.S. Monetary Policy”, American Economic Review, 94, 190-
217.

Schmitt-Grohé, S., and M. Uribe (2012): “What’s News in Business Cycles”,
Econometrica, 80, 2733-2764.

Sims, C. A. (2002): “Solving Linear Rational Expectations Models”,
Computational Economics, 20, 1-20.

***GENETIC ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION

The Genetic algorithm belongs to the class of evolutionary
optimization algorithms. The optimization begins with usually a
randomly drawn "population" of individuals (candidate solutions). The
objective function value is evaluated for each individual and a group
of "parents" is selected based on their fitness. Then, a fraction of

4

parents is randomly either combined (crossover operation) or mutated
via some random perturbation (mutation operation) to produce the next
generation to be used in the next iteration. A small fraction of
individuals with high fitness values are carried over unchanged
(elite children). This process of recombining and mutating the
population of candidate solutions continues until specified stop
criteria are met. The algorithm implementation in Matlab is
parallelized so computation time can be reduced with multiple cores.

The main options for the algorithm in the code are:

- Population size. Larger populations allow GA to better explore the
parameter space while increasing the computational burden at the same
time. There are no formal rules derived as to how the population size
should be set. One popular rule of thumb in the evolutionary
computation literature is to set the population size roughly to 10
times the dimension of the problem. Experimenting with our problems,
we found that population sizes of 100 for small scale models and 300
for medium scale model produce a balance between convergence
robustness and computational cost.

- The maximum number of generations. This is one of the stopping
criteria and determines the maximum number of times a population is
evolved. We set this for 1000 for all cases. The rationale is that GA
has good global exploration ability but low local exploitation
ability. We found that 1000 generations is typically enough to
pinpoint promising regions of parameter space where the minimum can
be located. While in principle GA can be allowed to run until the
global minimum is reached, at a certain point it becomes inefficient
to use GA for what effectively becomes a local search. This is
especially apparent in unconstrained problems such as those
considered in Tables 4 and 13 - GA can go through several thousand
generations making very small improvements and the computation time
can be substantial. By limiting the GA run to 1000 generations and
using the MultiStart algorithm on points from its final population
produces one seems to achieve a good balance between GA's global
exploration and the efficiency of the derivative-based local solver
in the second stage (note that the KL distance is typically
infinitely differentiable).

- Elite Count. This is the number of so-called "elite" individuals
that continue on without crossover or mutation. Setting it to a
positive number guarantees that the algorithm will improve on the
next iteration. It is advised to keep this parameter low to prevent a
few solution points dominating the population and making the search

5

less efficient. We find that assigning a small number, such as 3,
works well in cases of both the small and medium scale models. Note
that originally the default Matlab option for this parameter was 2,
and was changed to 5% of the population in more recent releases. We
find that using fewer elite individuals than 5% of the population in
our examples improves both the speed and the efficiency of the search.

- Stall Generation Limit. This is another stopping criterion, which
halts the algorithm if no improvement has been made over a certain
number of generations. We set this parameter to 50. We also
experimented with setting it to 100. The results are not sensitive.
The tradeoff is a standard one: setting it too low may result in the
algorithm stopping in a locally flat region that is not a global
optimum, while setting it too high may cause the algorithm to go for
more generations than necessary which increases computation time.

- Initial population. We let the initial population be randomly
initialized via uniform draws within parameter bounds. This way all
regions of the parameter space are treated equally. If the researcher
possesses knowledge about possible regions where the global optimum
is expected, particular points from those regions can be added to
potentially increase the speed of the search. However, this may bias
the search in a particular direction and miss the global optimum.

- Objective function tolerance level. We set it to 1E-10 throughout.
We also experimented with setting it to 1E-12. Setting it to a low
value may increase the computational time, but is often worthwhile to
avoid premature termination of the code.

- Constraint handling method. From version 2014b onwards, Matlab
provides two options for handling inequality constraints: "auglag"
and "penalty". The "penalty" method is preferred as it is often
faster and also allows us to easily control the number of generations.
The "auglag" option uses the Augmented Lagrangian algorithm that
creates a sequence of subproblems using the inequality constraints.
After a subproblem is minimized to desired accuracy, the outer
problem result is updated. Thus, the effective number of generations
(i.e., iterations of the outer problem) is not easily predictable.

There are other tuning parameters of the algorithm, such as mutation
and crossover fractions. We experimented with changing their values
and did not find a consistent improvement over the Matlab default
values. Therefore, we do not provide options for changing them within
the code. For more details, one can consult Matlab documentation for
the Global Optimization Toolbox.

6

**PARTICLE SWARM ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION

Particle Swarm algorithm is similar to GA in that it is an iterative
stochastic search procedure that involves a population (in PSO
language - swarm) of candidate solutions (particles). The key
difference of PSO from GA is that the particles have memory and can
communicate with each other and thus can change the direction of the
search. There are many variations of the PSO algorithm in the
literature. The one implemented by Matlab is as follows. Similarly to
GA, the algorithm initializes the swarm of a specified size randomly
via uniform draws from within the parameter bounds. However, the
updating scheme is different. Particles move through the parameter
space according to the following equations:

v_j(t + 1) = w*v_j(t) + c1*R1(pbest_j - theta_j(t)) + c2*R2(nbest_j - theta_j(t)),
theta_j(t + 1) = theta_j(t) + v_j(t + 1),

where theta_j(t) stand for particle j at iteration t, v_j(t) is
particle's velocity at iteration t, pbest_j is the parameter vector
that achieved the best function value so far for particle j, nbest_j
is the best parameter so far in the current neighborhood of particle
j. The parameter w is called the inertia weight, c1 and c2 are called
cognitive and social weights respectively, and R1 and R2 are randomly
drawn vectors, each element being a draw from a uniform [0,1]
distribution. It can be seen that the updating of candidate solution
consists of three components: 1) inertia (maintaining the same step
size in updating); 2) cognitive attraction (moving towards personal
best achieved so far); 3) social attraction (moving towards the best
solution obtained over all particles in the neighborhood). The
parameters w, c1, and c2 control the relative importance of the three
components. Matlab default values for c1 and c2 are set the same at
1.49.The inertia parameter w is allowed to vary with iterations in
MATLAB. The literature in the field suggests that starting out with
higher inertia and progressively lowering it leads to better
performance. Namely, starting out with a value in the range [0.9,1.2]
and going down progressively to something like 0.1 gives good results.
The intuition is that the high inertia weight initially throws the
particles around a lot creating explosive growth in swarm diversity
and thus good exploration of the parameter space. Then, as promising
parts of the parameter space are found, lowering the inertia weight
allows the particles to concentrate on a more local search instead of

7

"flying over" the minimum if the inertia weight were still high.
MATLAB has an adaptive way to change the inertia weight: it blows up
the weight if there are fewer than two stall iterations to promote
further exploration, and cuts down the weight when the algorithm is
stalling in order to conduct a more local search. The inertia weight
is kept within the bounds specified by the user (option InertiaRange).
The default is [0.1,1.1]. At the start, MATLAB initializes the
inertia weight to the upper bound of the specified range in order to
have maximum exploration ability. The neighborhood of a particle is
determined randomly and its size, specified as a fraction of the
total swarm size, is adaptive: it shrinks when a better point is
found, otherwise grows all the way up to the whole swarm. Using the
neighborhood's best rather than the swarm's best for the social
aspect of updating solutions proved to provide better performance and
prevent premature convergence. Intuitively, by slowing down the
exchange of information between the particles via neighborhood, they
do not rush toward the swarm's best, but rather have a chance to
explore other promising areas of the parameter space. The algorithm
stops when some specified stopping criterion is reached. The
algorithm implementation in Matlab is parallelized so computation
time can be reduced with multiple cores.

The main options for the algorithm in the code are:

- Swarm size. Similar to GA, a larger swarm size allows the algorithm
to better explore the parameter space, while increasing the
computational burden at the same time. There do not seem to be
extensive guidelines for setting swarm size in the relevant
literature, rather, it is usually problem specific. Balancing the
performance/computation time tradeoff, we set the swarm size of 300
for all applications of small scale models, 600 for unconstrained
optimization in the medium scale model, and 1000 for constrained
cases of the medium scale model.

- The maximum number of iterations. This is one of the stopping
criteria and determines the maximum number of times a swarm is
updated. We found that 1000 generations are typically enough to
pinpoint promising regions of parameter space where the minimum can
be located. In principle, the number of iterations can be increased
to let the algorithm search for a global minimum by itself, however,
in some especially unconstrained problems such as those considered in
Tables 4 and 13, it can go through as many as 5000 iterations making
very small improvements thus making computation time several times
longer than the PSO + Multistart procedure implemented in the code.

8

By limiting the PSO run to 1000 iterations and using the MultiStart
algorithm on points from its final swarm seems to achieve a good
balance between PSO global exploration and the efficiency of
derivative-based local solver in the second stage (note that the KL
distance is typically infinitely differentiable).

- Stall iteration limit. This is another stopping criterion, which
halts the algorithm if no improvement has been made over a certain
number of iterations. We set this parameter to 100. This setting is
higher than an analogous one for GA since we find that PSO can more
effectively escape a flat region even after many stall iterations due
to the adaptive nature of updating candidate solutions.

 - Initial swarm. We let the initial swarm be randomly initialized
via uniform draws within parameter bounds. This way all regions of
the parameter space are treated equally. If the researcher possesses
knowledge about possible regions where the global optimum is expected,
particular points from those regions can be added to potentially
increase the speed of the search. However, this may bias the search
in a particular direction and miss the global optimum.

- Objective function tolerance level. We set the tolerance level at
1E-6 throughout for small scale models and 1e-10 for medium scale
model.

- Constraint handling method. Matlab implementation of PSO only
provides boundary constraint handling. Since we have additional
inequality constraints in some cases, we modify the objective
function to apply a flat penalty in case a candidate solution point
violates the constraints. We found this method works as well or
better than setting penalty level proportional to violations of
feasibility.

- Minimum Neighborhood Fraction. This is the parameter that
determines the minimum neighborhood size that a particle communicates
with as a fraction of the total swarm. We found this to be a very
important tuning parameter. Setting it to an extreme value of 1 (i.e.,
each particle immediately learns the swarm's best solution) seems to
produce premature convergence even when swarm size is relatively
large. We found that lowering this parameter to 0.1 produces good
results, as, intuitively, restricting communications between
particles prolongs exploration of the parameter space. Recall that
this parameter only controls the lower bound of the neighborhood size.

9

Matlab adaptively enlarges or shrinks the neighborhood depending on
the search progress.

- Retrieving the swarm. Unlike GA, Matlab does not automatically
report the final swarm of particles. In order to retrieve it, we
utilize the output function psout.m located in the General folder. It
saves the swarms after each 200 iterations. Although not necessary
here (we use the final swarm only), this can be helpful in cases
where the final swarm could be very homogeneous, so starting the
local optimizer from points in an earlier swarm could produce better
results.

As is evident from the brief description above, there are other
potential tuning parameters, such as inertia weight range and
coefficients on social and cognitive attraction parts. We found that
results are not as sensitive to modifying these as they are to
changing swarm or minimum neighborhood size and that Matlab defaults
perform well and seem to correspond to best practices in the relevant
literature. Therefore, these parameters are left at default values.

For more details, consult Matlab documentation for the Global
Optimization Toolbox. For an overview and the recent standard
practice of PSO optimization, see Clerc (2012): "Standard Particle
Swarm Optimization"
(http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf).

**
***MULTISTART ALGORITHM: BRIEF DESCRIPTION AND NOTES ON IMPLEMENTATION
**

Multistart is not a separate algorithm, but rather a conveniently
packaged suite of local optimization routines that allows us to
conduct local searches using a fairly large number of initial values.
We choose the Active-Set local search algorithm to use with
Multistart based on performance.

Multistart is invoked at the second stage of optimization, after GA
or PSO population or swarm complete 1000 iterations or another
stopping criterion is triggered. We then select the first 50 points
from the respective final population/swarm, and additionally 10
equally spaced points from the rest of the population/swarm. For
added robustness, we generate 50 random starting points within
parameter bounds and run the local search from the 110 specified
points. Due to the parallel evaluation of multiple local solvers,

http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf).

10

such a procedure is computationally feasible and takes a few minutes
for small scale models and a few hours for a medium scale model on a
modern desktop computer with 8 cores.

The options here are standard options for the Active-Set local
optimization algorithm:

- The maximum number of iterations. This option is set to 1000 in the
code.

- The maximum number of function evaluations. This is set to 10000 in
the code. For more challenging problems, i.e., constrained
minimization of KL distance between medium scale models, we set this
value to 20000.

- Tolerance level. This is set 1E-10.

