
This document describes the code for the paper “Cross-corpora comparisons of topics and topic

trends”. The scripts are numbered according to the phases of the proposed project pipeline, which is

presented below.

First, preprocessing of the text data was performed (see

01_ImportData_Preprocessing_GermanData.ipynb for the German texts collection and

01_Preprocessing&LDAPolishCorpora.ipynb for the Polish texts collection). Since the original texts

could not be provided, you won’t be able to execute these scripts. However, you can take a look at all

the preprocessing steps that were performed (language detection, cleaning, lemmatizing) and

packages that were used.

Second, to determine the optimal number of topics for each corpus, we implemented and applied

sBIC routine (see the scripts beginning with “02_Topic_Number_Selection …”). You can run these

scripts as document-term matrices for all the subsets are provided. To be able to run the proposed

sBIC routine, please add the following functions to the file “...\sklearn\decomposition_lda.py” in the

directory of scikit-learn module:

 def loglik(self, X):

 """Calculate the expected sample log-likelihood.

 Parameters

 X : array-like or sparse matrix, shape=(n_samples, n_features)

 Document word matrix.

 Returns

 score : float

 """

 X = self._check_non_neg_array(X, reset_n_features=True, whom="LatentDirichletAllocation.loglik")

 doc_topic_distr = self._unnormalized_transform(X)

 score = self._approx_loglik(X, doc_topic_distr, sub_sampling=False)

 return score

import math

def _approx_loglik(self, X, doc_topic_distr, sub_sampling):

 """Estimate the approximate sample log-likelihood

 Parameters

 X : array-like or sparse matrix, shape=(n_samples, n_features)

 Document word matrix.

 doc_topic_distr : array, shape=(n_samples, n_components)

 Document topic distribution. In the literature, this is called

 gamma.

 sub_sampling : boolean, optional, (default=False)

 Compensate for subsampling of documents.

 It is used in calculate bound in online learning.

 Returns

 score : float

 """

 is_sparse_x = sp.issparse(X)

 n_samples, n_components = doc_topic_distr.shape

 n_features = self.components_.shape[1]

 score = 0

 dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr)

 dirichlet_component_ = _dirichlet_expectation_2d(self.components_)

 doc_topic_prior = self.doc_topic_prior_

 topic_word_prior = self.topic_word_prior_

 if is_sparse_x:

 X_data = X.data

 X_indices = X.indices

 X_indptr = X.indptr

 # E[log p(docs | theta, beta)]

 for idx_d in range(0, n_samples):

 if is_sparse_x:

 ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]]

 cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]]

 else:

 ids = np.nonzero(X[idx_d, :])[0]

 cnts = X[idx_d, ids]

 temp = (dirichlet_doc_topic[idx_d, :, np.newaxis]

 + dirichlet_component_[:, ids])

 norm_phi = logsumexp(temp, axis=0)

 score += np.dot(cnts, norm_phi)

 scale=0

 for i in range(1,np.sum(cnts)+1):

 scale +=math.log(i)

 for i in range(0,len(cnts)):

 for j in range(1,cnts[i]+1):

 scale -=math.log(j)

 score +=scale

 return score

Third, topic matching was performed using the scripts beginning with “03”:

• 03.1_Emmbeddings_based_Matching_Germany.ipynb: this script can be executed since all

the needed source files are provided. However, you would need to download the pre-trained

word embeddings and change the path name in the script. Here, the matching between

DE^ENG and DE^GER using pre-trained multilingual word embeddings is performed.

• 03.2_Topic_word_frequency_based_Matching.ipynb: Here, the matching between PL^ENG

and DE^ENG is performed based on topic-word frequencies.

• 03.3_Matched_Topics_Poland_Germany.ipynb: The matches between all the three data

subsets are constructed and plotted, as presented in Figures 11 and 12. You can run the

script when you run the scripts 03.1 and 03.2 and adjust the paths where you want to store

the results.

Apart from the main results, results on robustness checks are presented in the paper:

• Robustness_Machine_Translation.ipynb: the script is executable beginning from 3.2,

subsection sBIC routine. All the further steps, matching with the Polish corpus can be also

executed. The results are reported in Appendix C.1.

• Robustness_sklearn_vs_gensim.ipynb: this script compares the LDA models trained using

gensim and sklearn modules. The results of this robustness check are presented in Appendix

C.2.

• Robustness_Jensen_Shannon.ipynb: this script performs topic-word frequencies-based

matching using a different similarity measure. The results of this robustness check are

presented in Appendix C.3.

• Other_Evaluation_Metrics.ipynb: this script can be used to calculate other evaluation metrics

widely used in the literature. The results are presented in Figure 5.

