
This document describes the code for the paper “Cross-corpora comparisons of topics and topic 

trends”. The scripts are numbered according to the phases of the proposed project pipeline, which is 

presented below.  

 

First, preprocessing of the text data was performed (see 

01_ImportData_Preprocessing_GermanData.ipynb for the German texts collection and 

01_Preprocessing&LDAPolishCorpora.ipynb for the Polish texts collection). Since the original texts 

could not be provided, you won’t be able to execute these scripts. However, you can take a look at all 

the preprocessing steps that were performed (language detection, cleaning, lemmatizing) and 

packages that were used.  

Second, to determine the optimal number of topics for each corpus, we implemented and applied 

sBIC routine (see the scripts beginning with “02_Topic_Number_Selection …”).  You can run these 

scripts as document-term matrices for all the subsets are provided. To be able to run the proposed 

sBIC routine, please add the following functions to the file “...\sklearn\decomposition\_lda.py” in the 

directory of scikit-learn module: 

  def loglik(self, X): 

        """Calculate the expected sample log-likelihood. 

        Parameters 

        ---------- 

        X : array-like or sparse matrix, shape=(n_samples, n_features) 

            Document word matrix. 

        Returns 

        ------- 

        score : float 

        """ 

        X = self._check_non_neg_array(X, reset_n_features=True, whom="LatentDirichletAllocation.loglik") 

        doc_topic_distr = self._unnormalized_transform(X) 

        score = self._approx_loglik(X, doc_topic_distr, sub_sampling=False) 

        return score 

 



 

import math     

def _approx_loglik(self, X, doc_topic_distr, sub_sampling): 

        """Estimate the approximate sample log-likelihood 

        Parameters 

        ---------- 

        X : array-like or sparse matrix, shape=(n_samples, n_features) 

            Document word matrix. 

        doc_topic_distr : array, shape=(n_samples, n_components) 

             Document topic distribution. In the literature, this is called 

             gamma. 

        sub_sampling : boolean, optional, (default=False) 

             Compensate for subsampling of documents. 

             It is used in calculate bound in online learning. 

        Returns 

        ------- 

        score : float 

        """ 

 

        is_sparse_x = sp.issparse(X) 

        n_samples, n_components = doc_topic_distr.shape 

        n_features = self.components_.shape[1] 

        score = 0 

        dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr) 

        dirichlet_component_ = _dirichlet_expectation_2d(self.components_) 

        doc_topic_prior = self.doc_topic_prior_ 

        topic_word_prior = self.topic_word_prior_ 

        if is_sparse_x: 

            X_data = X.data 

            X_indices = X.indices 

            X_indptr = X.indptr 

        # E[log p(docs | theta, beta)] 

        for idx_d in range(0, n_samples): 

            if is_sparse_x: 

                ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]] 

                cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]] 

            else: 



                ids = np.nonzero(X[idx_d, :])[0] 

                cnts = X[idx_d, ids] 

            temp = (dirichlet_doc_topic[idx_d, :, np.newaxis] 

                    + dirichlet_component_[:, ids]) 

            norm_phi = logsumexp(temp, axis=0) 

            score += np.dot(cnts, norm_phi) 

            scale=0 

            for i in range(1,np.sum(cnts)+1): 

                scale +=math.log(i) 

            for i in range(0,len(cnts)): 

                for j in range(1,cnts[i]+1): 

                    scale -=math.log(j) 

            score +=scale 

        return score 

 

Third, topic matching was performed using the scripts beginning with “03”: 

• 03.1_Emmbeddings_based_Matching_Germany.ipynb: this script can be executed since all 

the needed source files are provided. However, you would need to download the pre-trained 

word embeddings and change the path name in the script. Here, the matching between 

DE^ENG and DE^GER using pre-trained multilingual word embeddings is performed. 

• 03.2_Topic_word_frequency_based_Matching.ipynb: Here, the matching between PL^ENG 

and DE^ENG is performed based on topic-word frequencies. 

• 03.3_Matched_Topics_Poland_Germany.ipynb: The matches between all the three data 

subsets are constructed and plotted, as presented in Figures 11 and 12. You can run the 

script when you run the scripts 03.1 and 03.2 and adjust the paths where you want to store 

the results.  

 

Apart from the main results, results on robustness checks are presented in the paper: 

• Robustness_Machine_Translation.ipynb: the script is executable beginning from 3.2, 

subsection sBIC routine. All the further steps, matching with the Polish corpus can be also 

executed.  The results are reported in Appendix C.1. 

• Robustness_sklearn_vs_gensim.ipynb: this script compares the LDA models trained using 

gensim and sklearn modules. The results of this robustness check are presented in Appendix 

C.2. 

• Robustness_Jensen_Shannon.ipynb: this script performs topic-word frequencies-based 

matching using a different similarity measure. The results of this robustness check are 

presented in Appendix C.3.   

• Other_Evaluation_Metrics.ipynb: this script can be used to calculate other evaluation metrics 

widely used in the literature. The results are presented in Figure 5. 

 


