Joscha Beckmann
;
Gary Koop
;
Dimitris Korobilis
;
Rainer Alexander Schüssler
You're currently viewing an old version of this dataset. To see the current version, click here.

exchange rate predictability and dynamic bayesian learning (replication data)

We consider how an investor in the foreign exchange market can exploit predictive information by means of flexible Bayesian inference. Using a variety of vector autoregressive models, the investor is able, each period, to learn about important data features. The developed methodology synthesizes a wide array of established approaches for modeling exchange rate dynamics. In a thorough investigation of monthly exchange rate predictability for 10 countries, we find that using the proposed methodology for dynamic asset allocation achieves substantial economic gains out of sample. In particular, we find evidence for sparsity, fast model switching, and exploitation of the exchange rate cross-section.

Data and Resources

This dataset has no data

Suggested Citation

Beckmann, Joscha; Koop, Gary; Korobilis, Dimitris; Schüssler, Rainer Alexander (2020): Exchange rate predictability and dynamic Bayesian learning (replication data). Version: 1. Journal of Applied Econometrics. Dataset. https://journaldata.zbw.eu/dataset/exchange-rate-predictability-and-dynamic-bayesian-learning?activity_id=c28909cb-b06e-4788-8749-e5624f161c28