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1 Estimation

1.1 Data

In the following we plot the main raw time series which we use for the estimation calculations
presented in the paper.
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Figure 1: Data between 1876Q1 and 20011Q4.
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Figure 2: Primary deficits over debt between 1876Q1 and 2011Q4, the o indicate the original
data by Bohn (2008) while the solid line indicates the final interpolated data.
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In Figure 3, we plot the filtered time series which we use in Section 2 of the main text
for the OLS regression. To keep this subsection self-contained, denote the unfiltered time
series by x and the corresponding filtered time series by x(β). The filter is defined as
x(β)t = α

∑n
k=−n β

|k|xt+k, where α = (1− β)2 / (1− β2 − 2βn+1 (1− β)) is chosen such that
the sum of weights equals one. We set n to eight and choose β = 0.95, which achieves the
intention of focusing on low-frequency variations.
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Figure 3: Filtered time series of inflation (solid) and deficit over debt (dashed). β = 0.95

1.2 Metropolis-within-Gibbs sampler

We use the Metropolis-within-Gibbs sampler to obtain draws for the parameters of our
time-varying VAR. The sampler is structured as follows. We start by initializing bT , HT ,V
with estimates from our training sample. We then draw the VAR coefficients aT from
p(aT | yT , bT , HT , V), where the superscript T denotes the history of the variable (or vector
of variables) up to time T . In the next step we draw the bT from p(bT | yT , aT , HT , V). Up
to this step, the our sampler is identical to the one described in Primiceri (2005). In the fourth
step we deviate from the Gibbs sampler of Primiceri (2005) and draw the log volatilities using
the Metropolis-Hastings algorithm suggested by Watanabe and Omori (2004). We hence
draw HT from p(HT | yT , aT , bT , V). In the last step we draw the variance-covariance
matrix V, by sampling Q from p(Q| yT , AT , BT , HT ), W from p(W| yT , AT , BT , HT )
and S from p(S1| yT , AT , BT , HT ). . . p(Sn−1| yT , AT , BT , HT ). This last step is again
identical to the one described in Primiceri (2005).

1.3 Convergence Checks

To check the convergence of our sampler, we have used visual inspections and numerical
convergence diagnostics. The visual inspections illustrate how the parameters move through
the parameter space, thereby allowing us to check wether the chain gets stuck in certain
areas. To visualize the evolution of our parameters, we use running mean plots and trace
plots. For lack of space, we present only running mean plots and trace plots for the trace
of the variance covariance matrices Q, W, and S. As can be seen in Figure 4, and Figure
5 running mean plots and trace plots both show that the mean of the parameter values
stabilize as the number of iterations increases and that the chains are mixing quite well.
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Figure 4: Running Mean Plot.
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Figure 5: Trace Plot.
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Additionally, we have calculated autocorrelations at the 10th lag as a numerical measure
of the mixing characteristics of the Markov chain. High autocorrelations indicate a bad
mixing of the chain that would exacerbate the convergence of the sampler. We have also
computed the total number of draws needed to obtain a certain precision as suggested by
Raftery and Lewis (1992).
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Figure 6: Convergency diagnostics.

Figure 6 depicts the convergence diagnostics for all hyperparameters (points 1-3055),
the stochastic volatilities (points 3056-5300) and the absolute maximum eigenvalue of the
parameter matrix At (points 5301-5749). As can be seen in Figure 6(a), most of the auto-
correlations are below 0.1 indicating that the chain mixes quite well and that the sampler
performs efficiently. Moreover, as can be seen in Figure 6(b), the number of draws suggested
by the Raftery and Lewis (1992) diagnostic is far below our actual number of draws (we
used 0.025 for the quantile, 0.025 for the level of precision, and the 0.95 for probability of
obtaining the required precision). To summarize, according to convergence tests conducted
the sampler seems to be converged.
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1.4 Supplementary results

1.4.1 VAR coefficients
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(a) Constant and AR(1) parameter
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Figure 7: Time-varying parameter estimates of matrix A.

1.4.2 Unconditional second moments

In the paper we mainly focus on the relationship between deficits and inflation at frequency
zero. The additional results in this subsection present different measures of co-movements
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between public deficits and inflation for different frequencies. To keep this subsection self-
contained, we re-state the state-space system of the time-varying VAR model:

xt+1 = At|Txt + Bt|Twt+1 (1)

yt+1 = Ct|Txt + Dt|Twt+1 ,

where xt is the nx× 1 state vector, yt+1 is an ny× 1 vector of observables, wt+1 is an nw× 1
Gaussian random vector with mean zero and unit covariance matrix that is distributed
identically and independently across time. The matrices A,B,C, and D are functions of
a vector of the time-varying structural model parameters. Given this representation the
corresponding temporary spectral density at time t of matrix Y is

SY,t|T (ω) = Ct|T
(
I −At|T e

−iω)Bt|TB′t|T
(
I −At|T e

−iω)C′t|T + Dt|TD′t|T . (2)

The temporary spectral density matrix is a Fourier transformation of the sequence of tempo-
rary autocovariance matrices EYt|TY

′
t−j|T at time t which can be recovered via the formula:

EYt|TY
′
t−j|T =

1

2π

∫ π

−π
SY,t|T (ω) eiωjdω (3)

Given this temporary autocovariances, we calculate the unconditional second moments of
the model variables. In particular, Figure 8 and Figure 9(a) present the implied tempo-
rary standard deviations of the different variables over time given the VAR model and the
unconditional correlation between primary deficits over debt and inflation, respectively.

The correlation at different frequencies is calculated in the following way. Let yt and xt
be two scalar components of Yt and Sy,t|T (ω) and Sx,t|T (ω) the temporary spectral density
functions of yt and xt, respectively. Finally, let Cyx,t|T (ω) be the temporary co-spectrum
between yt and xt at time t. Given these definitions the temporary coherence (or coherency
squared) Υyx,t|T (ω) between yt and yt at time t, is defined as

Υyx,t|T (ω) =
Cyx,t|T (ω)2 +Qyx,t|T (ω)2

Sx,t|T (ω)Sy,t|T (ω)
=

|Syx,t|T (ω)|2

Sx,t|T (ω)Sy,t|T (ω)
(4)

where Sxy,t|T (ω) is the temporary cross-spectrum and Qxy,t|T (ω) the temporary quadrature
spectrum. As mentioned in the paper, this measure can be interpreted as the R2 at the
frequency ω of the two time series, i.e. how much of the variation in each variable is explained
by the joint variation. This measure is also related to the dynamic correlation between yt
and xt as proposed by Croux, Forni, and Reichlin (2001). We follow Croux et al. (2001) and
calculate the dynamic correlation, because coherency is not symmetric and involves complex
numbers. More precisely, the dynamic correlation is defined as:

ρxy,t|T (ω) =
Cxy,t|T (ω)√

Sx,t|T (ω)Sy,t|T (ω)
. (5)

The results for this temporary correlation at different frequencies are illustrated in Figure
9(b). For readability, we just present results for the time episode between 1960 and 2000.
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Figure 8: Standard deviations of the variables.
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Both Figures 9(a) and 9(b) show that the correlation between public deficits and inflation
was increasing during the 1960s with a all time hight in the mid 1970s. After 1980 the
correlation goes down again. Figure 9(b) points out the importance of low frequencies for
the co-movements between deficits and inflation.
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Figure 9: Correlation of primary deficits over debt with inflation

To further investigate the different frequencies, we compute the dynamic correlation for
different frequency bands. In particular, we are interested in the co-movement of two time
series in the long run and in the short run. While the first can be interpreted as frequencies
longer than eight years, we define the latter one as a measure at the business cycles frequen-
cies, e.g. periods between one and eight years. The temporary dynamic correlation on a
frequency band is given by

ρxy,t|T (ω+) =

∫
ω+ Cxy,t|T (ω) dω√∫

ω+ Sx,t|T (ω) dω
∫
ω+ Sy,t|T (ω) dω

, (6)

where ω+ = [0, π∗), 0 ≤ π∗ ≤ π and ω+ = [π∗, π), 0 < π∗ ≤ π are related to the long-run
dynamic correlation or the short-run dynamic correlation as defined above, respectively.

In comparison to Figure 9(a), the figures illustrate that for both frequency bands we can
observe a similar pattern but, especially, for low-frequencies the changes are more striking.
While, for the 1970s the correlation between public deficits and inflation is significant positive
with values close to 0.9 in the long run, we find that the correlation for the time from 1980
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onward becomes much smaller and most of the time insignificant different from zero for the
long run as well as for business cycle frequencies.
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Figure 10: Correlation of primary deficits over debt with inflation for different frequency
bands.
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2 Robustness

2.1 Alternative measures

In Section 2 of the corresponding paper we illustrate the low-frequency relationship between
inflation and primary deficits over debt by presenting scatter plots of the corresponding
filtered time series, where the filter is defined as xt (β) = α

∑n
k=−n β

|k|xt+k. Here, α =

(1− β)2 /
(
1− β2 − 2βk+1 (1− β)

)
is being chosen such that the sum of weights equals one.

The number of leads and lags n is set to 8 and β = 0.95. The slope of the scatter plots is
equal to the OLS estimate of the following regression

πt (β) = const+ bfdt (β) + error, (7)

where we assume orthogonality between dt (β) and the error term.
Alternatively, we can calculate the low-frequency relationship directly without filtering

the data by employing the efficient lead/lag estimator postulated by Stock and Watson
(1993). The corresponding regression formula using unfiltered data is given by

πt = const+ bfdt +
n∑

i=−n

γi∆dt−i + error, (8)

where bf is the dynamic OLS estimator (DOLS). The number of leads and lags is chosen to
be 8. Finally, we employ Newey-West HAC standard errors for both estimation approaches.

Column 2 and 3 of Table 1 present the estimation results for both regressions as well as
for different sub-samples.

As third alternative, we estimate the low-frequency relationship by employing the method
suggested by Sargent and Surico (2011). In particular, we estimate the VAR model and use its
coefficients to compute the low-frequency relationship. The VAR model contains unfiltered
data instead of filtered data. Hence, we follow Sargent and Surico (2011) and make use of
one result provided by Whiteman (1984). In particular, Whiteman (1984) shows that for
β close to 1, the regression coefficient in equation (7) can be approximated by the sum of
lagged regression coefficients of a projection of π on d. Formally, define the projection as

πt =
∞∑

j=−∞

ιjdt−j + εt, (9)

with the orthogonality assumption E[dt−jεt] = 0. The regression coefficient is approximated
as

bf ≈
∞∑

j=−∞

ιj (10)

Sargent (1987) shows that the sum of lagged regression coefficients is equal to the cross
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Sample OLS DOLS BVAR(2) BVAR(4)

1900-1933 0.2882 0.2879 0.6305 0.0496
(0.0499) (0.0570) [0.2912;0.9869] [-0.3029;0.3900]

1934-1951 0.0909 0.2999 0.0579 0.2686
(0.0350) (0.1585) [-0.1755;0.2351] [0.1938;0.3427]

1952-1983 0.8076 1.0604 1.3378 1.2013
(0.1214) (0.1108) [1.0984;1.6459] [0.9369;1.5282]

1984-2009 0.0691 0.0913 0.1418 0.2015
(0.0242) (0.0913) [0.0881;0.2101] [0.1104;0.3008]

1900-2009 0.2212 0.2455 0.4275 0.2354
(0.0395) (0.0791) [ 0.2251;0.6223] [0.0459;0.4421]

Table 1: Low-frequency relationship between primary deficits over debt and inflation for
different subsamples calculated from OLS estimates of filtered time series and from DOLS
and BVAR model estimates of unfiltered time series. The values in parenthesis are Newey-
West HAC standard errors, values in brackets correspond to 16% and 84% probability bands.

spectrum of π and d, Sπd, divided by the spectrum of d, (Sd), at frequency zero:

∞∑
j=−∞

ιj =
Sπd(0)

Sd(0)
(11)

Column 4 and 5 of Table 1 show the estimation results for bf based on time-invariant Bayesian
VAR models with 2 and 4 lags for different sub-samples. Each BVAR model includes primary
deficits over debt, output growth, inflation, nominal interest rate, and money growth. For
estimation, we assume a weak Normal-Whishart prior for the coefficients and the covariance
matrix of the BVAR model. Afterwards, we draw parameter vectors from the posterior of
the BVAR model and retain those draws for which stationarity of the associated VAR model
is ensured. Finally, we calculate bf for each of the 1000 posterior draws. Figure 11 illustrates
the similar distribution of bf with respect to different lag specifications. To conclude, all
aforementioned methodologies show similar patterns. In particular, we find a low-frequency
relationship for the time between 1952 and 1983, but not for the period from 1984 onward.

Finally, we also calculate time-varying estimates of equation (7) and (8) by employing
a rolling sample with a fixed window length of 120 quarters. Figure 12 presents the time-
varying estimates of bf . The results of both time-varying estimation approaches are similar
and indeed comparable to our main result.
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using sample 1900:q1-2009:q4.
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Figure 12: Rolling sample (fixed window) regression coefficients.
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2.2 Further low-frequency relationships

Below we analyze whether the low-frequency relationship between inflation and the primary
deficits over debt ratio diminishes or even cancels out other well established low-frequency
relationships. More precisely, we investigate the low-frequency relationship between inflation
and money and between money and interest rates as postulated by Lucas (1980) and recently
investigated by Sargent and Surico (2011). As Figures 13(a) and 13(c) show, we obtain
results similar to those of Sargent and Surico (2011), i.e. our finding of an additional positive
relationship does not crowd out the existing relationships.
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Figure 13: Selected low-frequency relationships.
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2.3 Alternative TVP-VAR Specifications

In the following, we describe different robustness checks which we employ to investigate
the sensitivity of our results. First, we change the interpolation method for the primary
deficits over debt time series. In particular, we employ the methods proposed by Chow and
Lin (1971) and Litterman (1983) next to the cubic-spline approach. Figure 14 presents the
interpolated time series.
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Figure 14: Interpolated time series for primary deficits over debt using different interpolation
methods.

We use for both methods, Chow and Lin (1971) and Litterman (1983), as related time
series for the interpolation real GDP and the Price index as described in Section 3 of the
main paper. The results for all methods are quite similar. We decide to use the interpolated
time series based on the cubic-spline method for our baseline estimation. This is based on the
fact that next to the time series employed in the VAR model, we have no other suitable long
time series available whose information can be exploited to interpolate the primary deficit-
over debt time series. But this is necessary for the application of the methods proposed by
Chow and Lin (1971) and Litterman (1983). Using the same time series for interpolation
and estimation of the TVP-VAR would imply that we use the data twice. Therefore, we
only show that the interpolated time series are similar, but do not employ the different
interpolated time series in the estimation.

While the theory about inflationary consequences of public deficits (see, e.g., Sims, 2011)
highlights the role of market values, unfortunately, the long time series for government debt
by Bohn (2008) is only available in par values and not in market values. However, since
we are interested in the low-frequency relationship, temporary differences between market
and par values should not be critical (see also Bohn, 1991). Nevertheless, we analyze the
robustness of our results with respect to market value of debt by constructing a quarterly
proxy. In particular, we calculate quarterly primary deficits calculated from NIPA data and
market value of privately held gross federal debt calculated by the Federal Reserve Bank of
Dallas. The final quarterly time series covers the time from 1947:q1 until 2010:q1. Figure
15 illustrates that our main result is robust with respect to differences between market and
par values of debt.

What is more, since our analysis is based on a long time series of the GDP deflator, we
want to investigate how robust the results are regarding different measures of inflation. To
this end, we substitute the GDP deflator with the CPI deflator, which is the time series
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Figure 15: b̂f : Median and 68% central posterior bands for the time-varying regression
coefficient inflation on primary deficits over debt. Robustness check with quarterly primary
deficits over market value of debt.

‘Consumer Price Index for All Urban Consumers (CPIAUCSL)’ taken from the FRED II
database of the Federal Reserve Bank of St. Louis. Similarly to the above mentioned
marked value of debt this time series is just available from 1947:q1 onward. Hence, we run
the estimation with a shorter sample starting in 1948:q1. Figure 16 shows the main result.
For both robustness checks which deal with shorter samples we employ also a shorter training
sample at the beginning of the observations. This gives us also confidence that estimation
results are not sensitive regarding our choice of the training sample.
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Figure 16: b̂f : Median and 68% central posterior bands for the time-varying regression
coefficient inflation on primary deficits over debt. Robustness check CPI inflation instead of
GDP deflator.

Next, we check the robustness of our result with respect to other interest rates measures
and another measure of fiscal stance. Moreover, we apply a different ordering of the vari-
ables in the VAR model. In particular, the alternative ordering is: primary deficits over
debt, money growth, inflation, interest rate, and GDP growth. Figures 17 to 19 show the
main result based on these different VAR specifications. While different interest rates have
almost no impact on our result, the change of the fiscal variable also changes the estimated
relationship slightly. Also, our main finding of an high relationship in the 1970s, which
deteriorates after 1980, still exists.
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Figure 17: b̂f : Median and 68% central posterior bands for the time-varying regression
coefficient inflation on primary deficits over debt. Robustness check with 3m nominal interest
rates instead of 6m interest rates.
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Figure 18: b̂f : Median and 68% central posterior bands for the time-varying regression
coefficient inflation on primary deficits over debt. Robustness check with 3m real interest
rates instead of 6m interest rates.
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Figure 19: b̂f : Median and 68% central posterior bands for the time-varying regression
coefficient inflation on debt growth. Robustness check with real debt growth instead of
primary deficits over debt.
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2.4 Counterfactuals

In the following section we provide additional results regarding the counterfactual exercise in
Section 4.3 of the paper. First, we present in addition to the unconditional median of b̂f also
the corresponding 68% central posterior bands. Figure 20 shows the results with posterior
bands related to Figures 8 and 9 of the main paper. The dashed line represents the median
of b̂f without fixing the VAR model coefficients.
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(a) 1976:Q1
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Figure 20: Counterfactual experiment: Median and 68% central posterior bands for b̂f for
VAR model coefficients (A and B) fixed at different point in times. The dashed line repre-
sents the median of b̂f without fixing the VAR model coefficients.

In the following we investigate how sensitive these results are with respect to the chosen
points in time. Therefore, we run the counterfactual experiment by fixing the matrices A
and B to the mean over a time span instead by fixing both to particular quarters. Figure
21 shows the results for two different time spans, first, between 1970:Q1 and 1978:Q4 and,
second, between 1985:Q1 and 1994:Q1. Remarkably, these figures illustrate the robustness
of our counterfactual analysis regarding the chosen points in time.

Finally, we run a counterfactual experiment without choosing any specific point in time.
In particular, we scale the matrix H for each point in time to 1. This means that in each point
in time the shocks which hit the economy have the same size. The remaining matrices A and
B are drawn from their posterior distribution at each point in time. Figure 22 confirms our
finding that the movements of the low-frequency relationship are note due to changes in the
volatilities of the shocks but driven by changes in the systematic behavior of the economy.
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(a) 1970:Q1-1978:Q4
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Figure 21: Counterfactual experiment: Median and 68% central posterior bands for b̂f for
VAR model coefficients (A and B) fixed at mean over different time spans. The dashed line
represents the median of b̂f without fixing the VAR model coefficients.
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Figure 22: Counterfactual experiment: Median and 68% central posterior bands for b̂f with
matrix H scaled over the complete time span.
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