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Appendix A. Linearization of the model

The linear approximation of f at σ = 1 is given by lnXij = f(1)+(σ−1)f ′(1). Letting L ≡
∑

k Lk,

we have:

f(1) = lnYj − ln

(∑
k

Lk
Li

)
= lnYj − lnL+ lnLi. (A.1)

Turning to the derivative, some longer calculations show that

f ′(σ) = lnYj − ln

[∑
k

Lk
Li

(
τkjYk
τijYi

) 1
σ
−1

X
1− 1

σ
kj

]

−σ

∑
k
Lk
Li

(
1
σ2

) [
−
(
τkjYk
τijYi

) 1
σ
−1
X

1− 1
σ

kj ln
(
τkjYk
τijYi

)
+
(
τkjYk
τijYi

) 1
σ
−1
X

1− 1
σ

kj lnXkj

]
∑

l
Ll
Li

τljYl
τijYi

1
σ
−1
X

1− 1
σ

lj

,

thus implying that

f ′(1) = lnYj − lnL+ lnLi +
∑
k

Lk
L

ln
τkj
τij

+
∑
k

Lk
L

ln
Yk
Yi
−
∑
k

Lk
L

lnXkj. (A.2)

Using (A.1) and (A.2), the linear approximation of f is given by

lnXij = σ lnLi − σ lnL+ σ lnYj − (σ − 1) lnYi − (σ − 1) ln τij

+(σ − 1)
∑
k

Lk
L

ln τkj + (σ − 1)
∑
k

Lk
L

lnYk − (σ − 1)
∑
k

Lk
L

lnXkj,

which, from the aggregate income constraint Yi = wiLi, can be rewritten as

ln

(
Xij

YiYj

)
= σ

∑
k

Lk
L

ln
Lk
L

+ (σ − 1) lnYj − (σ − 1)

(
ln τij −

∑
k

Lk
L

ln τkj

)

−σ

(
lnwi −

∑
k

Lk
L

lnwk

)
−
∑
k

Lk
L

lnYk − (σ − 1)
∑
k

Lk
L

lnXkj.

Making again use of Yi = Liwi, and since
∑

k(Lk/L) = 1, we then have

ln

(
Xij

YiYj

)
= σ

∑
k

Lk
L

ln
Lk
L

+ (σ − 1)
∑
k

Lk
L

lnYj − (σ − 1)

(
ln τij −

∑
k

Lk
L

ln τkj

)

−σ

(
lnwi −

∑
k

Lk
L

lnYk +
∑
k

Lk
L

lnLk

)
−
∑
k

Lk
L

lnYk − (σ − 1)
∑
k

Lk
L

lnXkj

= −σ lnL− (σ − 1)

(
ln τij −

∑
k

Lk
L

ln τkj

)
− σ lnwi − (σ − 1)

∑
k

Lk
L

ln

(
Xkj

YkYj

)
.
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The foregoing expression has an autoregressive structure with respect to the dependent variable

Zij ≡ Xij/(YiYj):

lnZij = −σ lnL− (σ − 1)

(
ln τij −

∑
k

Lk
L

ln τkj

)
− σ lnwi − (σ − 1)

∑
k

Lk
L

lnZkj. (A.3)

Observe that (A.3) is structurally close to the estimating equations of both Feenstra (2002, 2004)

and Anderson and van Wincoop (2003).

Appendix B. Data description

Trade flows betweem U.S. states and Canadian provinces (measured in thousands of U.S. dollars),

as well as regional GDPs (also measured in thousands of U.S. dollars) are those used by Anderson

and van Wincoop (2003). Their data set can be freely obtained from Robert C. Feenstra’s data

page (http://cid.econ.ucdavis.edu/). The data set also contains bilateral distances (measured

in kilometers) between the different states and provinces. They are computed using the great

circle formula applied to the state and province capitals’ geographic coordinates. Concerning the

internal distances of the provinces and states, we compute three different measures. First, following

Redding and Venables (2004), we compute the internal distance as two-thirds times the square

root of the region’s surface divided by π. Regional surface data (in square kilometers) comes from

the ArcView database. Alternatively, as a robustness check, we also used half of this surface-

based distance measure (i.e., one-third times the square root of the region’s surface divided by π).

Anderson and van Wincoop’s internal distance measure, defined as one-fourth of the minimum

distance between an exporter and all the other regions, is readily computed from the distances

given in Feenstra’s data set.

We augment the above mentionned data set by including population and wage data. First,

we use 1988 population figures at the state and province level to compute the regional pop-

ulation shares. U.S. figures come from the U.S. Census Bureau’s historical population esti-

mates (http://www.census.gov/popest/archives/1980s/st8090ts.txt) and Canadian figures

are provided by Statistics Canada (Table 051-0001). Second, the wage data we use is also for

1988 and is the average hourly manufacturing wage at the state and province level. The U.S.

data comes from the Bureau of Labor Statistics and is computed for SIC 30 using private sec-

tor employment only. The hourly wage is obtained as total annual wages divided by average

annual employment, divided by 1,836 hours worked per year. Data is available as a flat file

(ftp://ftp.bls.gov/pub/special.requests/cew/ SIC/history/state/staa7587.zip). The

Canadian average hourly manufacturing wages by province are obtained from Statistics Canada
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(Table 281-0008). These wages are converted into U.S. dollars using the 1988 exchange rate ob-

tained from the PennWorld Tables rev6.3.

Appendix C. Border effects

C.1. Homogeneous coefficients. Following Anderson and van Wincoop (2003) we decompose

the border effects into two components: the trade-boosting intranational effect and the trade-

reducing international effect of the border. To disentangle the two components and to retrieve the

full implied border effect (both intranational and international), we proceed as follows. First, we

define the border effects as the ratio of trade flows in a world with borders to that which would

prevail in a borderless world. Let Zij denote the former and Zij the latter. Using (10) and (12) in

the paper, we then have

Bij ≡
Zij

Zij

= e
θ
[
bij−

∑
k
Lk
L
bkj

]∏
k

(
Zkj

Zkj

)ρLk
L

, (C.1)

where the term e
θ
[
bij−

∑
k
Lk
L
bkj

]
subsumes the border frictions as a deviation from their population-

weighted average. Note that (C.1) defines a log-linear system of all the relative trade flows, which

depend on all border effects. Let B stand for the n2×1 vector of the ln(Zij/Zij) and let b stand for

the N2×1 vector of the
[
bij −

∑
k
Lk
L
bkj
]
. The log-linearized version of the system has the following

solution, B = θ(I − ρW)−1b, which allows us to retrieve the border effect as the exponential of

the foregoing expression.

Note that (C.1) quite naturally depends upon where regions i and j are located. Four cases

may therefore arise with respect to Canada-U.S. trade. Let popCA ≡
∑

k∈CA
Lk
L

(resp., popUS ≡∑
k∈US

Lk
L

) stand for the Canadian (resp., the U.S.) population share. It is readily verified that

θ

[
bij −

∑
k

Lk
L
bkj

]
=


−θ popUS if i ∈ CA, j ∈ CA

θ popUS if i ∈ CA, j ∈ US

θ popCA if i ∈ US, j ∈ CA

−θ popCA if i ∈ US, j ∈ US

(C.2)

The explicit solution for lnBij is then given by

lnBij = θ
[
(I− ρW)−1

]
i
b, (C.3)

where [(I− ρW)−1)]i denotes the i-th line of the matrix. Using (C.2) and (C.3), and the fact that

W is row-standardized and has a special structure which implies that Wb = 0, the border effects
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are finally given as follows:

lnBij =


−θ popUS if i ∈ CA, j ∈ CA

θ popUS if i ∈ CA, j ∈ US

θ popCA if i ∈ US, j ∈ CA

−θ popCA if i ∈ US, j ∈ US

These expressions for the border effects reveal several interesting points. First, the expressions for

CA-CA and U.S.-U.S. can be interpreted as the trade-boosting effect of the international border on

flows within each country. Indeed, when ξ is positive and ρ is negative (as implied by our model),

the trade flows within each country will be larger in a world with border than in a borderless

world. The reason is that the border protects domestic firms from import competition and gives

them an advantage in the home market. Second, the expressions for CA-U.S. and U.S.-CA can

be interpreted as the trade-reducing effect of the international border on flows across countries.

When ξ is positive and ρ is negative, the trade flows across countries will be smaller in a world

with borders than in a borderless world. Third, as in Anderson and van Wincoop (2003), smaller

countries will have larger implied border effects than large countries since their magnitude depends

positively on the size of the trading partner, as measured by its population share. The reason is

that the border affects the small country more than the large country, as it creates trade frictions

for a larger share of the total demand served by its firms. Finally, the full border effect (combining

the trade-boosting and trade-reducing effects), is given by e−2ξρ popUS for Canadian provinces and

by e−2ξρ popCA for U.S. states.

C.2. Heterogeneous coefficients. In the heterogeneous coefficients model, we can retrieve the

region-specific border effects in an analogous way to that presented in the foregoing Appendix C.1.

Starting from (C.1), taking logarithms and rearranging, we readily obtain:

lnZij − lnZij =
θ

1− ρLi
L︸ ︷︷ ︸

θi

[
bij −

∑
k

Lk
L
bkj

]
− ρ

1− ρLi
L︸ ︷︷ ︸

ρi

∑
k 6=i

Lk
L

(
lnZkj − lnZkj

)
. (C.4)

Using the expressions established in Appendix C.1. (which remain unchanged in the heterogeneous

coefficient case), as well as the same matrix notation, we then obtain:

lnBij = θi
[
I− ρ⊗Wd

]−1
i

b.

The only change with respect to the homogeneous coefficient case is that the coefficient θi captures

the local border frictions, whereas ρ is a vector of elements accounting for the varying ‘thoughness

of competition’ in the different regional markets.
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Appendix D. Log-likelihood and the information matrix

In this technical appendix, we derive the theoretical properties of the heterogeneous coefficients

SARMA model with country-specific autoregressive parameters (ρj and λj for j = 1, 2) and region-

specific non-autoregressive parameters (β1i, β2i and θi for i = 1, ..., n).

D.1. Model. To make notation as compact as possible, let Vi stand for the diagonal matrix

defined by Vi ≡ Ei ⊗ In, where Ei = [ 0 | 0 | . . . ei . . . | 0 | 0 ] with ei (the i-th vector of

the canonical base of Rn) in position i and zero column vectors elsewhere. The diagonal matrix

Vi is, therefore, a selection matrix with 1 on its main diagonal for the selected variables and 0

otherwise. Note that, by construction,
∑n

i=1 Vi = In2 . Analogously, let Dj stand for the diagonal

selection matrix with 1 on its main diagonal for selecting canadian provinces or U.S. states, and

0 otherwise. Again,
∑2

j=1 Dj = In2 by construction. Using the definitions of Vi and Dj, the

estimating equation (19) can be rewritten as follows:

Z =
∑
i

Vi

{
β1id̃ + β2iw + θib̃

}
+
∑
j

Dj ρjWdZ + u,

= Γβ + D
(
ρ⊗Wd

)
Z + u, (D.1)

where

u = ε+ D(λ⊗Wd)ε. (D.2)

In expressions (D.1) and (D.2), Wd ≡W−Wdiag denotes the interaction matrix ; Γ ≡ V (In ⊗M)

denotes the n2 × 6n block diagonal matrix of explanatory variables, with M ≡ [ d̃ | w̃ | b̃ ];

V ≡ [ V1 | V2 . . . Vi . . . Vn ] stands for the n2 × n3 selection matrix which extracts local

subsamples from the full sample; β is the 6n × 1 vector of region-specific parameters; and ρ and

λ are the 2 × 1 vectors of autoregressive interaction coefficients. Expressions (D.1) and (D.2)

constitute the most compact and general specification of our model and will be useful for deriving

the log-likelihood function and the information matrix.

Note that, in contrast to the SARMA model in the homogeneous case, we need to estimate

two autoregressive interaction coefficients associated with different interaction matrices, the sum

of which is equal to the interaction matrix that is used in the homogenous case (ρj = ρ and λj = λ

for j = 1, 2). Letting S(ρ) = In2 − D(ρ ⊗Wd) and S(λ) = In2 + D(λ ⊗Wd), the equilibrium

vector Z is as follows:

Z = S(ρ)−1
[
Γβ + S(λ)ε

]
, (D.3)

where S(ρ) and S(λ) are both non-singular. We propose to estimate this model by standard

maximum likelihood techniques.
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D.2. Log-likelihood. Let ε(θ) ≡ S(λ)−1 [S(ρ)Z− Γβ], where θ =
[
β′ | ρ′ | λ′

]′
. The log-

likelihood of (D.3) is then given by:

lnL(θ, σ2) = −n
2

ln(2π)− n

2
lnσ2 + ln |S(ρ)| − ln |S(λ)| − 1

2σ2
ε′(θ)ε(θ). (D.4)

The Maximum Likelihood Estimators (MLE) θ̂ML and σ̂2
ML are derived from the maximization of

equation (D.4). In order to compute these estimators, it is convenient to work with the concentrated

log-likelihood.

D.3. Estimators. The first-order conditions yield the following expressions for the estimators

as a function of the autoregressive parameters:

β̂ML(ρ, λ) =
[
Γ′S′(λ)−1S(λ)−1Γ

]−1
Γ′S′(λ)−1S(λ)−1S(ρ)Z (D.5)

σ̂2
ML(ρ, λ) =

1

n
Z′S′(ρ)S′(λ)−1M(λ)S(λ)−1S(ρ)Z, (D.6)

with M(λ) ≡ In2 − S(λ)−1Γ
[
Γ′S′(λ)−1S(λ)−1Γ

]−1
Γ′S′(λ)−1 the n2 × n2 projection matrix.

Proof. The first-order condition with respect to β is given by:

∇β lnL(θ, σ2) = 0 ⇐⇒ Γ′S′(λ)−1S(λ)−1S(ρ)Z = Γ′S′(λ)−1S(λ)−1Γβ,

which directly yields

β̂ML(ρ, λ) =
[
Γ′S′(λ)−1S(λ)−1Γ

]−1
Γ′S′(λ)−1S(λ)−1S(ρ)Z.

The first-order condition with respect to σ2 is given by:

∇σ2 lnL(θ, σ2) = 0 ⇐⇒ −n+
1

σ2
ε′(θ)ε(θ) = 0,

which directly yields

σ̂2
ML(ρ, λ) =

1

n
ε′(θ)ε(θ).

Using the definition of the projection matrix M(λ) we then obtain:

σ̂2
ML(ρ, λ) =

1

n
Z′S′(ρ)S′(λ)−1M(λ)S(λ)−1S(ρ)Z,

which establishes the result.
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D.4. Maximization of the concentrated log-likelihood. The concentrated log-likelihood

can be rewritten as a function of the vectors ρ and λ as follows:

lnLc(ρ, λ) = −n
2

(ln(2π) + 1) + ln |S(ρ)|+ ln |S(λ)|

− n

2
ln

[(
e0(λ)−

∑n
i=1 ρiei(λ)

)′ (
e0(λ)−

∑n
i=1 ρiei(λ)

)
n

]
, (D.7)

where e0(λ) = M(λ)S(λ)−1Z, and where ei(λ) = M(λ)S(λ)−1DiWdZ for i = 1, 2. Put differently,

e0(λ) is the vector of residuals of a regression of Z on Γ, and ei(λ) is the vector of residuals of a

regression of DiWdZ on Γ, for i = 1, 2.

Proof. Note first that, using the expression for σ̂2
ML(ρ, λ), we have the following relation: ε′(θ)ε(θ) =

nσ̂2
ML(ρ, λ). Moreover, using the expression of the projection matrix M(λ), it is straightforward

to obtain the concentrated log-likelihood.

The MLEs of ρ and λ, denoted respectively by ρ̂ML and λ̂ML, maximize the concentrated log-

likelihood (D.7). The MLEs of β and of σ2 are then given by β̂ML ≡ βML(ρ̂ML, λ̂ML) and by

σ̂2
ML ≡ σ2

ML(ρ̂ML, λ̂ML), respectively.

D.5. Information matrix. The asymptotic covariance matrix of the maximum likelihood esti-

mators is given by the inverse of the information matrix, which is defined as follows:

I(θ̃) = −E
[
∇2
θ̃,θ̃′

lnL(θ̃)
]

(D.8)

with θ̃ = (θ′, σ2)′. We can use the following estimator for this matrix:[̂
I(ˆ̃θ)

]−1
=
[
−∇2

ˆ̃
θ,
ˆ̃
θ′

lnL(ˆ̃θ)
]−1

(D.9)

To obtain this estimate, we need to compute that derivatives of the log-likelihood function.

D.6. First-order derivatives of the log-likelihood. We start with the first-order derivatives.

By definition, ε(θ) = S(λ)−1S(ρ)Z − S(λ)−1Γβ. Because the transpose of a scalar is that scalar

itself, we then obtain:

ε′(θ)ε(θ) = Z′S′(ρ)S′(λ)−1S(λ)−1S(ρ)Z− 2β′Γ′S′(λ)−1S(λ)−1S(ρ)Z

+ β′Γ′S′(λ)−1S(λ)−1Γβ. (D.10)

The derivative of the log-likelihood with respect to β is given by:

∇β lnL(θ, σ2) = − 1

2σ2
∇β [ε′(θ)ε(θ)]

= − 1

2σ2

[
−2Γ′S′(λ)−1S(λ)−1S(ρ)Z + 2Γ′S′(λ)−1S(λ)−1Γβ

]
=

1

σ2
Γ′S′(λ)−1ε(θ). (D.11)
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The derivative of the log-likelihood with respect to σ2 is given by:

∇σ2 lnL(θ, σ2) = − n

2σ2
+

2

4(σ2)2
ε′(θ)ε(θ) = − n

2σ2
+

1

2(σ2)2
ε′(θ)ε(θ). (D.12)

The derivative of the log-likelihood with respect to ρi, for i = 1, 2, is given by:

∇ρi lnL(θ, σ2) = −tr
(
S(ρ)−1DiWd

)
+

1

σ2
Z′W′

dD′iS
′(λ)−1ε(θ). (D.13)

Proof. To establish the expression for ∇ρi lnL(θ, σ2), note that

∇ρ lnL(θ, σ2) = ∇ρ ln |S(ρ)| − 1

2σ2
∇ρ

(
ε′(θ)ε(θ)

)
Computation of the first term requires to apply the theorem for chain derivation of a matrix

expression. Applying it for each element of the vector ρ, we have:

∇ρi ln |S(ρ)| = tr
(
∇S(ρ)(ln |S(ρ)|)′∇ρiS(ρ)

)
,

with ∇S(ρ) ln |S(ρ)| = (S(ρ)′)−1, and with

∇ρiS(ρ) = −D
[
(∇ρiρ)⊗Wd + ρ⊗ (∇ρiWd)

]
= −D(ei ⊗Wd) = −DiWd.

As in the foregoing, ei denotes the i-th vector of the canonical base, with 1 in position i and 0

otherwise. We then, therefore, obtain:

∇ρi ln |S(ρ)| = −tr
(
S(ρ)−1DiWd

)
.

To compute the second term, note that

∇ρi(ε
′(θ)ε(θ)) = ∇ρi(ε

′(θ)ε(θ)) + ε(θ)∇ρiε(θ)

= Z′∇ρiS
′(ρ)S′(λ)−1ε(θ) + ε′(θ)S(λ)−1∇ρiS(ρ)Z

= 2Z′∇ρiS
′(ρ)S′(λ)−1ε(θ),

where we use the property that the transpose of a scalar is the scalar itself. We obtain:

∇ρi(ε
′(θ)ε(θ)) = −2Z′(ei ⊗Wd)′D′S′(λ)−1ε(θ) = −2Z′W′

dD′iS
′(λ)−1ε(θ)

Putting finally the expressions together, we have:

∇ρi lnL(θ, σ2) = −tr
(
S(ρ)−1DiWd

)
+

1

σ2
Z′W′

dD′iS
′(λ)−1ε(θ)

for i = 1, 2, which establishes the result.
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Next, the derivative of the log-likelihood with respect to the vector λ is given by:

∇λi
lnL(θ, σ2) = tr

(
S(λ)−1DiWd

)
− 1

σ2
ε′(θ)W′

dD′iS
′(λ)

−1
ε(θ). (D.14)

Proof. To begin with, note that

∇λ lnL(θ, σ2) = −∇λ ln |S(λ)| − 1

2σ2
∇λ(ε

′(θ)ε(θ))

Computation of the first term requires to apply the theorem for chain derivation of a matrix

expression. Applying it for each element of the vector λ, we have:

∇λi
ln |S(λ)| = tr

(
∇S(λ) ln |S(λ)|′∇λi

S(λ)
)
,

with ∇S(λ) ln |S(λ)| = (S(λ)
′
)−1, and with

∇λi
S(λ) = D

[
(∇λi

λ)⊗Wd + λ⊗ (∇λi
Wd)

]
= D(ei ⊗Wd) = DiWd. (D.15)

As in the foregoing, ei denotes the i-th vector of the canonical base, with 1 in position i and 0

otherwise. We then, therefore, obtain:

∇λi
ln |S(λ)| = tr

(
S(λ)−1DiWd

)
.

To compute the second term, note that

∇λi
(ε′(θ)ε(θ)) = ∇λi

ε′(θ)ε(θ) + ε′(θ)∇λi
ε(θ)

= [S(ρ)Z− Γβ]′∇λi
S′(λ)−1ε(θ) + ε′(θ)∇λi

S(λ)−1 [S(ρ)Z− Γβ]

= 2 [S(ρ)Z− Γβ]′∇λi
S′(λ)−1ε(θ)

where we use the property that the transpose of a scalar is the scalar itself. We obtain:

∇λi
S′(λ)−1 = −S′(λ)−1∇λi

S′(λ)S′(λ)−1 = −S′(λ)−1W′
dD′iS

′(λ)−1.

Putting finally the expressions together, we have:

∇λi
(ε′(θ)ε(θ)) = −2 [S(ρ)Z− Γβ]′ S′(λ)−1W′

dD′iS
′(λ)−1ε(θ)

and

∇λi
lnL(θ, σ2) = −tr

(
S(λ)−1DiWd

)
+

1

σ2
[S(ρ)Z− Γβ]′ S′(λ)−1W′

dDi
′S′(λ)−1ε(θ),

for i = 1, 2, which establishes the result.
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D.7. Second-order derivatives of the log-likelihood. We next turn to the second-order

derivatives with respect to β. Deriving (D.11) with respect to β, we obtain:

∇2
β lnL(θ, σ2) =

1

σ2
Γ′S′(λ)−1∇βε(θ) = − 1

σ2
Γ′S′(λ)−1S(λ)−1Γ. (D.16)

Deriving (D.11) with respect to σ2 yields:

∂
(
∇β lnL(θ, σ2)

)
∂σ2

= − 1

(σ2)2
Γ′S′(λ)−1ε(θ). (D.17)

Taking the derivative of (D.11) with respect to ρj yields:

∂
(
∇β lnL(θ, σ2)

)
∂ρj

=
1

σ2
Γ′S′(λ)−1∇ρjε(θ)

=
1

σ2
Γ′S′(λ)−1S(λ)−1∇ρjS(ρ)Z

= − 1

σ2
Γ′S′(λ)−1S(λ)−1DjWdZ (D.18)

for j = 1, 2. Finally, the derivative of (D.11) with respect to λj is given by:

∂
(
∇β lnL(θ, σ2)

)
∂λj

=
1

σ2
Γ′
[
∂S′(λ)−1

∂λj
ε(θ) + S′(λ)−1

∂ε(θ)

∂λj

]
(D.19)

= − 1

σ2
Γ′
[
S′(λ)−1W′

dD′jS
′(λ)−1ε(θ)

+S′(λ)−1S(λ)−1DjWdS(λ)−1(S(ρ)Z− Γβ)
]

= − 1

σ2
Γ′S′(λ)−1

[
W′

dD′jS
′(λ)−1 + S(λ)−1DjWd

]
ε(θ)

for j = 1, 2. We next derive (D.12) with respect to σ2 to obtain the following second-order

derivative:
∂2 lnL(θ, σ2)

∂(σ2)2
=

n

2(σ2)2
− 1

(σ2)3
ε′(θ)ε(θ). (D.20)

The derivative of (D.12) with respect to ρj is computed as follows:

∂2 lnL(θ, σ2)

∂σ2∂ρj
=

1

2(σ2)2
∇ρj (ε′(θ)ε(θ)) = − 1

(σ2)2
Z′W′

dD′jS
′(λ)−1ε(θ), (D.21)

for j = 1, 2. The derivative of (D.12) with respect to λj is given by:

∂2 lnL(θ, σ2)

∂σ2∂λj
=

1

2(σ2)2
∇λj

(ε′(θ)ε(θ)) = − 1

(σ2)2
ε′(θ)W′

dD′jS
′(λ)−1ε(θ), (D.22)

for j = 1, 2. We next derive (D.13) with respect to ρj:

∂2 lnL(θ, σ2)

∂ρi∂ρj
= −

∂
(
tr(S(ρ)−1DiWd)

)
∂ρj

+
1

σ2
Z′W′

dD′iS
′(λ)−1∇ρjε(θ) (D.23)
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for j = 1, 2. Since

∂
(
tr(S(ρ)−1DiWd)

)
∂ρj

= tr
(
∇ρjS(ρ)−1DiWd

)
= tr

(
−S(ρ)−1∇ρjS(ρ)S(ρ)−1DiWd

)
= tr

(
S(ρ)−1DjWdS(ρ)−1DiWd

)
,

and since

∇ρjε(θ) = S(λ)−1∇ρjS(ρ)Z = −S(λ)−1DjWdZ,

we finally obtain:

∂2 lnL(θ, σ2)

∂ρi∂ρj
= −tr

(
S(ρ)−1DjWdS(ρ)−1DiWd

)
− 1

σ2
Z′W′

dD′iS
′(λ)−1S(λ)−1DjWdZ. (D.24)

We next derive (D.13) with respect to λj, which yields:

∂2 lnL(θ, σ2)

∂ρi∂λj
=

1

σ2
Z′W′

dD′i

[
∇λj

S′(λ)−1ε(θ) + S′(λ)−1∇λj
ε(θ)

]
= − 1

σ2
Z′W′

dD′iS
′(λ)−1

[
W′

dD′jS
′(λ)−1 + S(λ)−1DjWd

]
ε(θ), (D.25)

for j = 1, 2. Finally, the derivative of (D.14) with respect to λj is computed as follows:

∂2 lnL(θ, σ2)

∂λi∂λj
= −

∂
(
tr(S(λ)−1DiWd)

)
∂λj

+
1

σ2

[
∇λj

ε′(θ)W′
dD′iS

′(λ)−1ε(θ)

+ ε′(θ)W′
dD′i

(
∇λj

S′(λ)−1ε(θ) + S′(λ)−1∇λj
ε(θ)

)]
(D.26)

for j = 1, 2. We have:

∂
(
tr(S(λ)−1DiWd)

)
∂λj

= tr
(
∇λj

S(λ)−1DiWd

)
= tr

(
−S(λ)−1∇λj

S(λ)S(λ)−1DiWd

)
= −tr

(
S(λ)−1DjWdS(λ)−1DiWd

)
so that, using the foregoing results, we obtain:

∂2 lnL(θ, σ2)

∂λi∂λj
= tr

(
S(λ)−1DjWdS(λ)−1DiWd

)
− 1

σ2
ε′(θ)

[
W′

dD′jS
′(λ)−1W′

dD′iS
′(λ)−1

+ W′
dD′iS

′(λ)−1W′
dD′jS

′(λ)−1 + W′
dD′iS

′(λ)−1S(λ)−1DjWd

]
ε(θ). (D.27)
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