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The algorithm for simulating (4.3) requires the knowledge of the full conditional posterior den-

sities of γ, (β0,β1), Φ, Ω, µ, and V . Before describing the algorithm proper, we will derive the

forms of these six densities.

Since only the first and third terms of the right-hand side of (4.3) depend on γ, we have:

p∗(γ | β0,β1,Φ,Ω, µ, V ) ∝ L(β1, γ,Φ,Ω | data)fNO[β0;w0 − (Ir ⊗Π)x0,Σ]. (A1)

The first term of this product is the likelihood corresponding to equation (3.4):

Φ(L)wt − Φ(1)αt = [(x0t d0t )⊗ Φ(1)]S γ + ²t for t = r + 1, . . . , r + T . (A2)

Similarly, the second term may be viewed as a likelihood for the first r observations, corresponding

to the following regression equation:

(wt − αt) = (Π B )

µ
xt

Okq×1

¶
+ ut

= [(x0t O1×kq )⊗ In] vec (Π B ) + ut

= [(x0t O1×kq )⊗ In]S γ + ut. (A3)

In this case, the nr disturbances uit (for t = 1, . . . , r) are jointly distributed as N(0,Σ) and are

independent of the ²it, for t = r + 1, . . . , r + T .

Since (A2) and (A3) involve the same coefficient vector γ, we may combine them into:

y∗ = X∗γ + ψ (A4)

where ψ ∼ N(0,Ψ), with:

y∗ =



w1 − α1
...

wr − αr
Φ(L)wr+1 − Φ(1)αr+1

...
Φ(L)wr+T − Φ(1)αr+T


(A5)

X∗ =



[x01 O1×kq ]⊗ In
...

[x0r O1×kq ]⊗ In
[x0r+1 d0r+1 ]⊗ Φ(1)

...

[x0r+T d0r+T ]⊗ Φ(1)


S (A6)
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Ψ =

Ã
Σ Onr×nT

OnT×nr IT ⊗ Ω

!
. (A7)

The form of the conditional posterior of γ follows immediately, as:

p∗(γ | β0,β1,Φ,Ω, µ, V ) = fNO
£
γ; (X 0

∗Ψ
−1X∗)−1X 0

∗Ψ
−1y∗, (X 0

∗Ψ
−1X∗)−1

¤
. (A8)

Next, we recall from (4.1) that:

²t = Φ(L)wt − Φ(1)[αt + zt] (A9)

with zt = Πxt +Bdt, as defined in (4.2). This may be written as:

wt − αt − zt =
pX
j=1

Φj(wt−j − αt − zt) + ²t for t = r + 1, . . . , r + T (A10)

or, upon recalling the definition of Φ in (3.7), as:

Y = ΦX + E (A11)

where vecE ∼ N(0, IT ⊗Ω), and where the n× T matrix Y and the np× T matrix X are defined

as:

Y = (wr+1 − zr+1 − αr+1 wr+2 − zr+2 − αr+2 . . . wr+T − zr+T − αr+T ) (A12)

X =

wr−p+1 − zr+1 − αr+1 wr−p+2 − zr+2 − αr+2 . . . wr−p+T − zr+T − αr+T
...

... . . .
...

wr − zr+1 − αr+1 wr+1 − zr+2 − αr+2 . . . wr+T−1 − zr+T − αr+T

 .
(A13)

It follows from (4.3) and (A11) that:

p∗(vecΦ | γ,Ω,β0,β1, µ, V ) ∝ fNO
£
vecΦ; vecY X 0(XX 0)−1, (XX 0)−1 ⊗ Ω¤ IS(Φ)f(Φ,β0, γ,Ω)

(A14)

p∗(Ω | Φ, γ,β0,β1, µ, V ) ∝ fIW [Ω;T, (Y − ΦX)(Y − ΦX)0]f(Φ,β0, γ,Ω) (A15)

with:

f(Φ,β0, γ,Ω) = (detΣ)
−1/2 ×

exp

∙
−1
2
[β0 − w0 + (Ir ⊗Π)x0]0Σ−1[β0 − w0 + (Ir ⊗Π)x0]

¸
(detΘ)−(n+1)/2, (A16)

and where Σ and Θ have been defined in Section 3.

Our derivation of the full conditional posterior of (β0,β1) is adapted from Min (1998). We write

this density as:
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p∗(β0,β1 | γ,Φ,Ω, µ, V ) = p∗(β1 | β0, γ,Φ,Ω, µ, V )p∗(β0 | γ,Φ,Ω, µ, V ). (A17)

From (4.3), we see that:

p∗(β0,β1 | γ,Φ,Ω, µ, V ) ∝ fNO[β0;w0 − (Ir ⊗Π)x0,Σ] ×
L(β1, γ,Φ,Ω | data)fNO[β1;K−1(ıT ⊗ µ+ Jβ0),K−1(IT ⊗ V )(K 0)−1]. (A18)

The information contained in the last two terms of (A18) may be summarized by:

W1 = [IT ⊗ Φ(1)]β1 + ² (A19)

β1 = K
−1(ıT ⊗ µ) +K−1Jβ0 +K−1η (A20)

where ² ∼ N(0, IT ⊗ Ω), η ∼ N(0, IT ⊗ V ), and where:

W1 =

 Φ(L)wr+1 − Φ(1)zr+1
...

Φ(L)wr+T − Φ(1)zr+T

 . (A21)

Combining (A19) and (A20) yields:

W2 = X0β0 +B0η + ² (A22)

where B0 = [IT ⊗Φ(1)]K−1,W2 =W1−B0(ıT ⊗µ), and X0 = B0J . Since IT⊗Φ(1) is nonsingular,
the marginal in (A17) is obtained by updating the prior on β0 with the information contained in

(A22), as follows:

p∗(β0 | γ,Φ,Ω, µ, V ) = fNO(β0;M0, V0), where:

V0 = [Σ
−1 +X 0

0{B0(IT ⊗ V )B00 + IT ⊗ Ω}−1X0]−1, (A23)

M0 = V0[Σ
−1{w0 − (Ir ⊗Π)x0}+X 0

0{B0(IT ⊗ V )B00 + IT ⊗ Ω}−1W2]. (A24)

The derivation of p∗(β1 | β0, γ,Φ,Ω, µ, V ) is straightforward. We simply combine the informa-
tion in (A19) with the prior (3.12), and obtain:

p∗(β1 | β0, γ,Φ,Ω, µ, V ) = fNO(β1;M1, V1), where:

V1 = [K
0(IT ⊗ V −1)K + IT ⊗ Φ0(1)Ω−1Φ(1)]−1, (A25)

M1 = V1[K
0(IT ⊗ V −1)(ıT ⊗ µ+ Jβ0) + {IT ⊗ Φ0(1)Ω−1}W1]. (A26)

Finally, conditionally on β0 and β1, the second term on the right-hand side of (4.3) is the

likelihood of (µ, V ) corresponding to the last T instances of equation (2.6), which imply:

W3 = µ ı
0
T +H (A27)
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with vecH ∼ N(0, IT ⊗ V ) and with the n× T matrix W3 defined as:

W3 = [F (L)αr+1 · · · F (L)αr+T ] . (A28)

It follows that:

p∗(µ | Φ, γ,Ω,β0,β1, V ) = fNO(µ;T−1W3 ıT , T
−1V ), (A29)

p∗(V | Φ, γ,Ω,β0,β1, µ) = fIW [V ;T + 2n+ 1, (W3 − µ ı0T )(W3 − µ ı0T )0 + δ2I]. (A30)

We now describe the strategy for simulating the joint posterior density (4.3). The author gen-

erated two groups of N independent Metropolis-Hastings chains, each one starting from an initial

candidate generated from a thick-tailed, heuristically chosen density. The first group consisted of

chains of length L1 and the second of chains of length L2, with L2 > L1. The last links of the 2N

chains should be an i.i.d. sample from a good approximation to the posterior density. Convergence

was checked by means of a Wald test of the equality of the expectation vectors of the two groups

of generated variates, complemented by two-sample Kolmogorov-Smirnov tests on all the marginal

univariate distributions, as implemented in the IMSL subroutine DKSTWO: the value of L1 was

judged satisfactory when the Wald test did not reject the null hypothesis at the 1 percent signif-

icance level, and none of the Kolmogorov-Smirnov tests rejected the null at the 1 per thousand

significance level (these low values are chosen in order to control the overall level of significance).

The initial candidate hyperparameter vector, (Φ0, γ0,Ω0, µ0, V 0), was generated as follows. Φ0,

µ0, and γ0 were jointly drawn from a truncated multivariate Student density with three degrees

of freedom, and location and scale parameters derived from the asymptotic distribution of the

corresponding maximum likelihood estimates in (2.9), where the author neglected for simplicity

the MA structure of the disturbances; the density was truncated on the invertibility region S. Ω0

was drawn from an inverted Wishart approximate marginal posterior of the disturbance covariance

matrix in (2.1), where γt was approximated by a linear trend. Finally, conditionally on Φ
0, γ0,

and Ω0, V 0 was drawn from an inverted Wishart with T + r− s+ n degrees of freedom, and scale
matrix given by:

r+TX
t=s+1

[F (L)αt − µ̂][F (L)αt − µ̂]0

where α1, . . . ,αr were obtained by solving the deterministic part of (2.8), and αr+1, . . . ,αr+T were

drawn from multivariate Student densities with three degrees of freedom, and location and scale

parameters derived from equation (2.5). The vector µ̂ is the time average of the F (L)αt.

Once these initial candidates have been generated, the algorithm proceeds in the usual fashion:

we draw from the full conditional densities described at the beginning of this Appendix, always

using the most recent draw of the conditioning variables. However, drawing β0 and β1 directly
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from (A17) is impractical, due to the typically very large dimensions of the matrices in (A23) to

(A26). We therefore present an adaptation of the Kalman smoothing algorithm of Carter and

Kohn (1994) to the present case.

We first express the model for the last T observations in state space form. Equation (2.6) may

be written as:

ξt = ır ⊗ µ+ F ξt−1 + vt, for t = r + 1, . . . , r + T (A31)

where:

ξt =


αt−r+1
...

αt−1
αt

 (A32)

F =


O I O · · · O
O O I · · · O
...

...
... · · · ...

O O O · · · I
Fr Fr−1 Fr−2 · · · F1

 (A33)

with Fj = O for j > s, and where vt ∼ N(0, V∗), with:

V∗ =

On(r−1)×n(r−1) On(r−1)×n

On×n(r−1) V

 . (A34)

In view of (4.2), equation (2.5) is equivalent to:

Φ(L)wt = Hξt + Φ(1)zt + ²t for t = r + 1, . . . , r + T , with:

H = [On×n(r−1) Φ(1) ] . (A35)

Next, we recall from (3.13) that, conditionally on the first r sample observations, β0 = ξr is

distributed as N(w0− (Ir⊗Π)x0,Σ). The algorithm for generating (β0,β1) = (α1, . . . ,αr+T ) from
the conditional posterior is then a straightforward adaptation of Kim and Nelson (1999, chap. 8).

An exposition is given here for the sake of completeness.

Step 1. Compute ξr|r = w0 − (Ir ⊗Π)x0, and Pr|r = Σ from (3.14)—(3.16).

Step 2. For t = r + 1, . . . , r + T , compute zt = Πxt + Bdt, and compute and save ξt|t and Pt|t

from the following recurrence:

ξt|t−1 = ır ⊗ µ+ F ξt−1|t−1
Pt|t−1 = FPt−1|t−1F 0 + V∗

ηt|t−1 = Φ(L)wt − Φ(1)zt −Hξt|t−1
Kt = Pt|t−1H 0(HPt|t−1H 0 + Ω)−1

ξt|t = ξt|t−1 +Ktηt|t−1

Pt|t = Pt|t−1 −KtHPt|t−1.
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Step 3. Draw ξr+T from fNO(ξr+T ; ξr+T |r+T , Pr+T |r+T ), and let αr+T consist of the last n ele-

ments of ξr+T .

Step 4. Let F∗ be the matrix consisting of the last n rows of F in (A33), and let αt+1 consist of

the last n elements of ξt+1. For t = r + T − 1, . . . , r, compute:

ξt|t,αt+1 = ξt|t + Pt|tF 0∗(F∗Pt|tF
0
∗ + V )

−1(αt+1 − µ− F∗ξt|t)

Pt|t,αt+1 = Pt|t − Pt|tF 0∗(F∗Pt|tF 0∗ + V )−1F∗Pt|t,

and draw ξt from fNO(ξt; ξt|t,αt+1 , Pt|t,αt+1). Let, for t > r, αt consist of the last n elements of ξt,

and let:

α1
...
αr

 = ξr.

In the sequel, we will use the superscript (i) to denote the i-th link of the Markov chain, for

i = 1, . . . , L1 or i = 1, . . . , L2. Once β
(i)
0 and β

(i)
1 have been generated by the Kalman smoothing

algorithm just described, γ(i) is generated from the multinormal in (A8), with conditioning values

given by:

(β
(i)
0 ,β

(i)
1 ,Φ

(i−1),Ω(i−1), µ(i−1), V (i−1)).

Next, a candidate Φ is drawn by truncating on the invertibility domain S the multinormal in

(A14), with conditioning values given by:

(β
(i)
0 ,β

(i)
1 , γ

(i),Ω(i−1), µ(i−1), V (i−1)).

Φ(i) is set equal to this candidate with probability:

p = min

"
f(Φ,β

(i)
0 , γ

(i),Ω(i−1))

f(Φ(i−1),β(i)0 , γ(i),Ω(i−1))
, 1

#

and is set equal to Φ(i−1) with probability 1 − p. For a justification of this procedure, see Chib
and Greenberg (1995) and Deschamps (2000).

Next, a candidate Ω is drawn from the inverted Wishart in (A15), with conditioning values

given by:

(β
(i)
0 ,β

(i)
1 , γ

(i),Φ(i), µ(i−1), V (i−1)).

Ω(i) is set equal to this candidate with probability:
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q = min

"
f(Φ(i),β

(i)
0 , γ

(i),Ω)

f(Φ(i),β
(i)
0 , γ

(i),Ω(i−1))
, 1

#
and is set equal to Ω(i−1) with probability 1− q.
Finally, V (i) is drawn from (A30), using the conditioning values:

(β
(i)
0 ,β

(i)
1 , γ

(i),Φ(i),Ω(i), µ(i−1))

and µ(i) is drawn from (A29), using the conditioning values:

(β
(i)
0 ,β

(i)
1 , γ

(i),Φ(i),Ω(i), V (i)).

The link index i is then updated to i + 1, and the next link is initiated by another run of the

Kalman smoothing algorithm.

We conclude this Appendix with some practical remarks. The method just described was found

to generate well behaved Markov chains with acceptable rejection rates (for the UK data with

durables included, the average rejection rates on Φ and Ω were about 0.79 and 0.48, respectively;

the corresponding figures for the US data were 0.13 and 0.33).

The author defined S as the set of matrices Φ for which the companion matrix F (Φ) in (3.15)

has a spectral radius less than 0.99. The chosen lengths of the Markov chains varied between 500

and 800 links across models; 10000 replications were used in each case. For the quarterly UK

model, where Φ has dimensions 5× 20, it is cost-effective to generate Σ as a fixed point of:

Σk+1 = F (Φ)Σk[F (Φ)]
0 + Ω∗

where Ω∗ is generated from Ω in a fashion similar to V∗ in (A34). The differences with the inversion

method were not significant.

The program was written in FORTRAN 77; the author used the IMSL random generator with

a multiplier of 950706376 and shuffling. The code of the Kalman smoothing algorithm was tested

against a direct simulation (using GAUSS) of (A17). Following a suggestion of John Geweke (2001),

the full program was tested by replacing (3.17) and (3.18) by proper priors, and simulating the

joint density f(y, θ) by generating y from the full conditional f(y | θ) (given by the likelihood) at
each pass of the Metropolis-Hastings algorithm. The resulting replications of θ indeed reproduced

the prior.
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