Hierarchical Markov Normal Mixture models with Applications to Financial Asset Returns Appendix: Proofs of Theorems and Conditional Posterior Distributions

John Geweke ${ }^{a}$ and Gianni Amisano ${ }^{b}$
${ }^{a}$ Departments of Economics and Statistics, University of Iowa, USA
${ }^{b}$ European Central Bank, Frankfurt, Germany and University of Brescia, Brescia, Italy

December 22, 2008

Proofs of Theorems

Proof of Theorem 1
Using the methods of Ryden et al. (1998) for the Markov normal mixture model,

$$
\begin{equation*}
\operatorname{cov}\left(y_{t}, y_{t-s} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{T}\right)=\boldsymbol{\phi}^{\prime} \mathbf{B}^{s^{\prime}} \boldsymbol{\Pi} \boldsymbol{\phi}=\boldsymbol{\phi}^{\prime} \boldsymbol{\Pi} \mathbf{B}^{s} \boldsymbol{\phi}(s=1,2, \ldots), \tag{1}
\end{equation*}
$$

where $\boldsymbol{\Pi}=\operatorname{diag}(\boldsymbol{\pi}), \mathbf{B}=\mathbf{P}-\mathbf{e}_{m_{1}} \boldsymbol{\pi}^{\prime}$, which establishes sufficiency.
If the eigenvalues of \mathbf{P} are distinct then \mathbf{P} is diagonable and it has spectral decomposition $\mathbf{P}=\mathbf{Q}^{-1} \boldsymbol{\Lambda} \mathbf{Q}$, where the matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m_{1}}\right)$ contains the ordered eigenvalues λ_{j} of $\mathbf{P},\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \ldots\left|\lambda_{m_{1}}\right|$. The matrix \mathbf{Q} has orthogonal columns and we may take

$$
\begin{aligned}
\mathbf{Q} & =\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{m}\right]^{\prime}=\left[\boldsymbol{\pi}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{m}\right]^{\prime} \\
\mathbf{Q}^{-1} & =\left[\mathbf{q}^{1}, \mathbf{q}^{2}, \ldots, \mathbf{q}^{m}\right]=\left[\mathbf{e}_{m}, \mathbf{q}^{2}, \ldots, \mathbf{q}^{m}\right] .
\end{aligned}
$$

If \mathbf{P} is also irreducible and aperiodic then $\lambda_{1}=1>\left|\lambda_{2}\right|$ and we may write

$$
\begin{equation*}
\mathbf{B}=\mathbf{Q}^{-1} \boldsymbol{\Lambda} \mathbf{Q}-\mathbf{q}^{1} \mathbf{q}_{1}^{\prime}=\mathbf{Q}^{-1} \widetilde{\Lambda} \mathbf{Q} \tag{2}
\end{equation*}
$$

where $\widetilde{\Lambda}=\operatorname{diag}\left(0, \lambda_{2}, \ldots, \lambda_{m_{1}}\right)$. From (1) absence of serial correlation is equivalent to

$$
\boldsymbol{\phi}^{\prime} \boldsymbol{\Pi} \mathbf{Q}^{-1} \widetilde{\boldsymbol{\Lambda}}^{s} \mathbf{Q} \boldsymbol{\phi}=0 \quad(s=1,2, \ldots) .
$$

The first element of $\mathbf{Q} \boldsymbol{\phi}$ is $\mathbf{q}_{1}^{\prime} \boldsymbol{\phi}=\boldsymbol{\pi}^{\prime} \boldsymbol{\phi}=0$, and so

$$
\begin{equation*}
\phi^{\prime} \boldsymbol{\Pi} \mathbf{Q}^{-1} \boldsymbol{\Lambda}^{s} \mathbf{Q} \phi=0 \quad(s=1,2, \ldots) . \tag{3}
\end{equation*}
$$

Define the $m_{1} \times m_{1}$ matrix

$$
\mathbf{D}=\left[\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{m_{1}} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{m_{1}}^{2} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{m_{1}} & \lambda_{2}^{m_{1}} & \cdots & \lambda_{m_{1}}^{m_{1}}
\end{array}\right]
$$

whose determinant is $\left(\prod_{i=1}^{m_{1}} \lambda_{i}\right)^{m_{1}} \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right) \neq 0$ (Rao (1965), p 28). Let $\mathbf{A}=\mathbf{D}^{-1}$ and let $\delta_{i, j}$ denote the Kronecker delta function; then

$$
\sum_{s=1}^{m_{1}} a_{i s} \lambda_{j}^{s}=\delta_{i, j} \Longrightarrow \sum_{i=1}^{m_{1}} \sum_{s=1}^{m_{1}} a_{i s} \boldsymbol{\Lambda}^{s}=\mathbf{I}_{m_{1}}\left(i=1, \ldots, m_{1}\right)
$$

and from (3)

$$
\sum_{i=1}^{m_{1}} \sum_{s=1}^{m_{1}} a_{i s} \boldsymbol{\phi}^{\prime} \boldsymbol{\Pi} \mathbf{Q}^{-1} \boldsymbol{\Lambda}^{s} \mathbf{Q} \boldsymbol{\phi}=\boldsymbol{\phi}^{\prime} \boldsymbol{\Pi} \boldsymbol{\phi}=\sum_{i=1}^{m} \phi_{i}^{2} \pi_{i}=0
$$

Proof of Theorem 2

The instantaneous variance matrix $\Gamma_{0}^{(p)}$ is immediately attained by considering

$$
\begin{aligned}
\boldsymbol{\Gamma}_{0}^{(p)} & =E\left[\mathbf{z}_{t}^{(p)}-\boldsymbol{\mu}^{*(p)}\right]\left[\mathbf{z}_{t}^{(p)}-\boldsymbol{\mu}^{*(p)}\right]^{\prime}=E\left(\mathbf{z}_{t}^{(p)} \mathbf{z}_{t}^{(p) \prime}\right)-\boldsymbol{\mu}^{*(p)} \boldsymbol{\mu}^{*(p) \prime} \\
& =\sum_{j=1}^{m} \pi_{j}\left[\mathbf{z}_{t}^{(p)} \mathbf{z}_{t}^{(p) \prime} \mid s_{t}=j\right]-\boldsymbol{\mu}^{*(p)} \boldsymbol{\mu}^{*(p) \prime} \\
& =\sum_{j=1}^{m} \pi_{j}\left(\mathbf{R}_{j}^{(p)}+\boldsymbol{\mu}_{j}^{(p)} \boldsymbol{\mu}_{m}^{(p) \prime}\right)-\boldsymbol{\mu}^{*(p)} \boldsymbol{\mu}^{*(p) \prime}
\end{aligned}
$$

The dynamic covariance matrices $\boldsymbol{\Gamma}_{u}^{(p)}(p>0)$ are obtained by conditioning on s_{t} and s_{t-u}, exploiting serial independence of observables after conditioning on the states, and then by marginalizing out the states:

$$
\begin{aligned}
\boldsymbol{\Gamma}_{u}^{(p)} & =\operatorname{cov}\left(\mathbf{z}_{t}^{(p)}, \mathbf{z}_{t-u}^{(p)}\right)=E\left(\mathbf{z}_{t}^{(p)} \mathbf{z}_{t-u}^{(p) \prime}\right)-\boldsymbol{\mu}^{*(p)} \boldsymbol{\mu}^{(p) \prime} \\
& =\sum_{j=1}^{m} \sum_{i=1}^{m} E\left(\mathbf{z}_{t}^{(p)} \mathbf{z}_{t-u}^{(p) \prime} \mid s_{t}=j, s_{t-u}=i\right)\left[\mathbf{P}^{u}\right]_{i j} \pi_{i}-\mathbf{M}^{(p)} \boldsymbol{\pi} \boldsymbol{\pi}^{\prime} \mathbf{M}^{(p) \prime} \\
& =\sum_{j=1}^{m} \sum_{i=1}^{m} E\left(\mathbf{z}_{t}^{(p)} \mid s_{t}=j\right) E\left(\mathbf{z}_{t-u}^{(p) \prime} \mid s_{t}=i\right)\left[\mathbf{P}^{u}\right]_{i j} \pi_{i}-\mathbf{M}^{(p)} \boldsymbol{\pi} \boldsymbol{\pi}^{\prime} \mathbf{M}^{(p) \prime} \\
& =\sum_{j=1}^{m} \sum_{i=1}^{m} \boldsymbol{\mu}_{j}^{(p)} \boldsymbol{\mu}_{i}^{(p) \prime}\left[\mathbf{P}^{u}\right]_{i j} \pi_{i}-\boldsymbol{\mu}^{(p)} \mathbf{e}_{m}^{\prime} \boldsymbol{\Pi} \mathbf{M}^{(p) \prime}=\mathbf{M}^{(p)} \mathbf{B}^{u^{\prime}} \boldsymbol{\Pi} \mathbf{M}^{(p) \prime},
\end{aligned}
$$

where $\mathbf{B}^{u}=\left(\mathbf{P}-\mathbf{e}_{m} \boldsymbol{\pi}^{\prime}\right)^{u}=\mathbf{P}^{u}-\mathbf{e}_{m} \boldsymbol{\pi}^{\prime}$.
Proof of Theorem 3
Adopt the notation in the proof of Theorem 2. From (2), $\mathbf{B}^{u}=\sum_{j=2}^{m} \lambda_{j}^{u} \mathbf{q}^{j} \mathbf{q}_{j}^{\prime}$. Substituting in the expression for $\boldsymbol{\Gamma}_{u}^{(p)}$ in the statement of the theorem,

$$
\boldsymbol{\Gamma}_{u}^{(p)}=\sum_{j=2}^{m} \lambda_{j}^{u} \mathbf{M}^{(p)} \mathbf{q}_{j} \mathbf{q}^{j^{\prime}} \mathbf{M}^{(p) \prime}=\sum_{j=2}^{r+1} \lambda_{j}^{u} \mathbf{A}_{j}^{\prime} \quad(u=1,2,3, \ldots)
$$

where

$$
\mathbf{A}_{j}^{\prime}=\sum_{h \in H_{j}} \mathbf{M}^{(p)} \mathbf{q}_{h} \mathbf{q}^{h \prime} \mathbf{M}^{(p) \prime}, H_{j}=\left\{h: \mathbf{q}_{h}^{\prime} \mathbf{P}=\lambda_{j} \mathbf{q}_{h}^{\prime}, \mathbf{M}^{(p)} \mathbf{q}_{h} \neq \mathbf{0}\right\}
$$

Observe that r is the number of distinct eigenvalues of \mathbf{P} with modulus in the open unit interval associated with as least one column of \mathbf{Q}^{\prime} not in the column null space of $\mathbf{M}^{(p)}$. In other words, r can be less than $m-1$ because some eigenvalues are equal to zero (as in the compound Markov model interpreted as having $m=m_{1} m_{2}$ states), because some eigenvalues are repeated, or because some eigenvalues are associated with columns of \mathbf{Q}^{\prime} all in the column null space of $\mathbf{M}^{(p)}$.

Define now a stochastic process $\mathbf{v}_{t}^{(p)}$ with autocovariances $\tilde{\boldsymbol{\Gamma}}_{u}^{(p)}=\sum_{j=2}^{r+1} \lambda_{j}^{u} \mathbf{A}_{j}^{\prime}$ $(u>0)$ and $\tilde{\boldsymbol{\Gamma}}_{0}^{(p)}=\sum_{j=2}^{r+1} \mathbf{A}_{j}^{\prime}$. Then for $u>0, \tilde{\boldsymbol{\Gamma}}_{u}^{(p)}=\boldsymbol{\Gamma}_{u}^{(p)}$, while

$$
\tilde{\boldsymbol{\Gamma}}_{0}^{(p)}=\sum_{j=2}^{r+1} \mathbf{A}_{j}^{\prime}=\sum_{j=1}^{m} \boldsymbol{\mu}_{j}^{(p)} \boldsymbol{\mu}_{j}^{\prime(p)} \pi_{j}-\boldsymbol{\mu}^{*(p)} \boldsymbol{\mu}^{*(p) \prime}
$$

Notice that the matrix $\boldsymbol{\Gamma}_{0}^{(p)}-\tilde{\boldsymbol{\Gamma}}_{0}^{(p)}=\sum_{j=1}^{m} \mathbf{R}_{j}^{(p)} \boldsymbol{\pi}_{j}$ is positive (semi) definite, since each $\mathbf{R}_{j}^{(p)}$ is a variance matrix.

Given that there are r distinct eigenvalues of $\mathbf{P}, \lambda_{2}, \ldots, \lambda_{r+1}$, with modulus in the open unit interval, contributing to the determination of $\boldsymbol{\Gamma}_{u}^{(p)}=\tilde{\boldsymbol{\Gamma}}_{u}^{(p)}$, there exists a unique set of constants $\alpha_{1}, \ldots, \alpha_{r}$ such that

$$
\lambda_{j}^{r}-\sum_{i=1}^{r} \alpha_{i} \lambda_{j}^{r-i}=0 \quad(j=2, \ldots, r+1) .
$$

The coefficients $\alpha_{1}, \ldots, \alpha_{r}$ determine a degree r polynomial whose roots are $\lambda_{2}^{-1}, \ldots, \lambda_{r}^{-1}$. Thus for all $u>r$,

$$
\begin{aligned}
\tilde{\boldsymbol{\Gamma}}_{u}^{(p)}-\sum_{i=1}^{r} \alpha_{i} \tilde{\boldsymbol{\Gamma}}_{u-i}^{(p)} & =\sum_{j=2}^{r+1} \lambda_{j}^{u} \mathbf{A}_{j}^{\prime}-\sum_{i=1}^{r} \alpha_{i} \sum_{j=2}^{r+1} \lambda_{j}^{u-i} \mathbf{A}_{j}^{\prime} \\
& =\sum_{j=2}^{r+1}\left(\lambda_{j}^{u}-\sum_{i=1}^{r} \alpha_{i} \lambda_{j}^{u-i}\right) \mathbf{A}_{j}^{\prime}=\mathbf{0} .
\end{aligned}
$$

The autocovariance function of $\left\{\mathbf{v}_{t}^{(p)}\right\}$ therefore satisfies the Yule-Walker equations for a $\operatorname{VAR}(r)$ process with coefficient matrices $\alpha_{i} \mathbf{I}_{n p} \quad(i=1, \ldots, r)$.

Details of the Markov chain Monte Carlo algorithm

Let $\mathbf{s}^{1}=\left(\mathbf{s}_{11}, \ldots, \mathbf{s}_{T 1}\right)^{\prime}$. Then

$$
\begin{equation*}
\mathrm{p}\left(\mathbf{s}^{1} \mid \mathbf{X}\right)=\pi_{\mathbf{s}_{11}} \prod_{t=2}^{T} p_{\mathbf{s}_{t-1,1} \mathbf{s}_{t 1}}=\pi_{\mathbf{s}_{11}} \prod_{i=1}^{m_{1}} \prod_{j=1}^{m_{1}} p_{i j}^{T_{i j}} \tag{4}
\end{equation*}
$$

where $T_{i j}$ is the number of transitions from persistent state i to j in \mathbf{s}^{1}. The $n \times n$ Markov transition matrix \mathbf{P} is irreducible and aperiodic, and $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{m_{1}}\right)^{\prime}$ is the unique stationary distribution of $\left\{s_{t 1}\right\}$. Let $\mathbf{s}^{2}=\left(s_{12}, \ldots, s_{T 2}\right)^{\prime}$ denote all T transitory states. Then

$$
\begin{equation*}
p\left(\mathbf{s}^{2} \mid \mathbf{s}^{1}, \mathbf{X}\right)=\prod_{t=1}^{T} \rho_{\mathbf{s}_{t}}=\prod_{i=1}^{m_{1}} \prod_{j=1}^{m_{2}} \rho_{i j}^{U_{i j}} \tag{5}
\end{equation*}
$$

where $U_{i j}$ is the number of occurrences of $\mathbf{s}_{t}=(i, j)(t=1, \ldots, T)$.
The observables y_{t} depend on the latent states \mathbf{s}_{t} and the deterministic variables \mathbf{x}_{t}. If $\mathbf{s}_{t}=(i, j)$ then

$$
\begin{equation*}
y_{t}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}+\phi_{i}+\psi_{i j}+\varepsilon_{t} ; \quad \varepsilon_{t} \sim N\left[\mathbf{0},\left(h \cdot h_{i} \cdot h_{i j}\right)^{-1}\right] . \tag{6}
\end{equation*}
$$

Conditional on $\left(\mathbf{x}_{t}, \mathbf{s}_{t}\right)(t=1, \ldots, T)$ the y_{t} are independent. From (6) one expression for this distribution is

$$
\begin{align*}
p(\mathbf{y} \mid \mathbf{s}, \mathbf{X}) & =(2 \pi)^{-T n / 2} h^{T / 2} \prod_{i=1}^{m_{1}} h_{i}^{T_{i} n / 2} \prod_{j=1}^{m_{2}} h_{i j}^{U_{i j} n / 2} \\
& \cdot \exp \left[-h \sum_{i=1}^{m_{1}} h_{i} \sum_{j=1}^{m_{2}} h_{i j} \sum_{t: s_{t}=(i, j)} \varepsilon_{t}^{2} / 2\right] \tag{7}
\end{align*}
$$

The unconditional mean of the transitory states within each permanent state is $\mathbf{0}$, which is equivalent to $\boldsymbol{\psi}_{i}^{\prime} \boldsymbol{\rho}_{i}=\mathbf{0}\left(i=1, \ldots, m_{1}\right)$. Let \mathbf{C}_{j} be an $m_{2} \times\left(m_{2}-1\right)$ orthonormal complement of $\boldsymbol{\rho}_{j}$, define the $\left(m_{2}-1\right) \times 1$ vectors $\widetilde{\boldsymbol{\psi}}_{j}^{\prime}=\mathbf{C}_{j}^{\prime} \boldsymbol{\psi}_{j}$, and note that $\boldsymbol{\psi}_{j}=\mathbf{C}_{j} \widetilde{\boldsymbol{\psi}}_{j} \quad\left(j=1, \ldots, m_{1}\right)$. Construct the $m_{1} m_{2} \times m_{1}\left(m_{2}-1\right)$ block diagonal matrix $\mathbf{C}=\operatorname{Blockdiag}\left[\mathbf{C}_{1}, \ldots, \mathbf{C}_{m_{1}}\right]$ and the $m_{1}\left(m_{2}-1\right) \times 1$ vector $\widetilde{\boldsymbol{\psi}}=$ $\left(\widetilde{\boldsymbol{\psi}}_{1}^{\prime}, \ldots, \widetilde{\boldsymbol{\psi}}_{m_{1}}^{\prime}\right)^{\prime}$. Then $\boldsymbol{\psi}=\mathbf{C} \widetilde{\boldsymbol{\psi}}$, and substituting in equation (7) at the end of Section 2.1.1,

$$
\begin{equation*}
y_{t}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}+\widetilde{\phi}^{\prime} \mathbf{C}_{0}^{\prime} \mathbf{z}_{t}^{1}+\widetilde{\boldsymbol{\psi}}^{\prime} \mathbf{C}^{\prime} \mathbf{z}_{t}+\varepsilon_{t} . \tag{8}
\end{equation*}
$$

This expression has the form $y_{t}=\gamma^{\prime} \mathbf{w}_{t}+\varepsilon_{t}$ in which the $\left(k+m_{1} m_{2}-1\right) \times 1$ vector $\boldsymbol{\gamma}=\left(\boldsymbol{\beta}^{\prime}, \tilde{\boldsymbol{\phi}}^{\prime}, \widetilde{\boldsymbol{\psi}}^{\prime}\right)^{\prime}$ and

$$
\begin{equation*}
\mathbf{w}_{t}^{\prime}=\left(\mathbf{x}_{t}^{\prime}, \mathbf{z}_{t}^{1 \prime} \mathbf{C}_{0}, \mathbf{z}_{t}^{\prime} \mathbf{C}\right) \tag{9}
\end{equation*}
$$

Thus conditional on the latent states \mathbf{s}_{t} (equivalently \mathbf{z}_{t}^{1} and $\left.\mathbf{z}_{t}^{2}\right)(t=1, \ldots, T)$, and given the restrictions on the state means, (6) is a linear regression model with highly structured heteroscedasticity. If we take $\delta_{t}=h_{s_{t 1}} h_{\mathbf{s}_{t}}$, then

$$
\begin{align*}
p(\mathbf{y} \mid \mathbf{s}, \mathbf{X}) & =(2 \pi)^{-T / 2} h^{T / 2} \prod_{t=1}^{T} \delta_{t}^{n / 2} \exp \left[-\sum_{t=1}^{T} h \delta_{t} \varepsilon_{t}^{2} / 2\right] \\
& =(2 \pi)^{-T / 2} h^{T / 2} \prod_{t=1}^{T} \delta_{t}^{n / 2} \\
& \cdot \exp \left[-h \sum_{t=1}^{T} \delta_{t}\left(y_{t}-\mathbf{w}_{t}^{\prime} \boldsymbol{\gamma}\right)^{2} / 2\right] . \tag{10}
\end{align*}
$$

The kernel of the prior density is the product of the following expressions.

$$
\begin{gather*}
p(\boldsymbol{\beta}) \propto \exp \left[-(\boldsymbol{\beta}-\underline{\boldsymbol{\beta}})^{\prime} \underline{\mathbf{H}}_{\boldsymbol{\beta}}(\boldsymbol{\beta}-\underline{\boldsymbol{\beta}}) / 2\right] \tag{11}\\
p\left(\mathbf{p}_{i}\right) \propto \prod_{j=1}^{m_{1}} p_{i j}^{r_{1}-1} \quad\left(i=1, \ldots, m_{1}\right) \tag{12}\\
p\left(\boldsymbol{\rho}_{i}\right) \propto \prod_{j=1}^{m_{2}} \rho_{i j}^{r_{2}-1} \quad\left(i=1, \ldots, m_{1}\right) \tag{13}\\
p(h) \propto h^{(\underline{\nu}-1) / 2} \exp \left(-\underline{s}^{2} h / 2\right) \tag{14}\\
p\left(h_{i}\right) \propto h_{i}^{\left(\underline{\nu}_{1}-1\right) / 2} \exp \left(-\underline{s}_{1}^{2} h_{i} / 2\right) \quad\left(i=1, \ldots, m_{1}\right) \tag{15}\\
p\left(h_{i j}\right) \propto h_{i j}^{\left(\underline{\nu}_{2}-1\right) / 2} \exp \left(-\underline{s}_{2}^{2} h_{i j} / 2\right) \\
\left(i=1, \ldots, m_{1} ; j=1, \ldots, m_{2}\right) \tag{16}\\
p(\widetilde{\boldsymbol{\phi}} \mid h) \propto h^{\left(m_{1}-1\right) / 2} \exp \left(-\underline{h}_{\phi} h \widetilde{\boldsymbol{\phi}}^{\prime} \widetilde{\boldsymbol{\phi}} / 2\right) \tag{17}\\
=h^{\left(m_{1}-1\right) / 2} \exp \left(-\underline{h}_{\phi} h \sum_{i=1}^{m_{1}-1} \widetilde{\phi}_{i}^{2} / 2\right) \tag{18}\\
p\left(\widetilde{\boldsymbol{\psi}}_{i} \mid h_{i}, h\right) \propto\left(h \cdot h_{i}\right)^{\left(m_{2}-1\right) / 2} \\
\cdot \exp \left(-\underline{h}_{\psi} h_{i} h \widetilde{\boldsymbol{\psi}}_{i}^{\prime} \widetilde{\boldsymbol{\psi}}_{i} / 2\right) \\
\quad\left(i=1, \ldots, m_{1}\right)
\end{gather*}
$$

$$
\begin{gather*}
p\left(\widetilde{\boldsymbol{\psi}} \mid h_{1}, \ldots, h_{m}, h\right) \\
\propto h^{m_{1}\left(m_{2}-1\right) / 2} \prod_{i=1}^{m_{1}} h_{i}^{\left(m_{2}-1\right) / 2} \exp \left(-\underline{h}_{\psi} h \sum_{i=1}^{m_{1}} h_{i} \widetilde{\boldsymbol{\psi}}_{i}^{\prime} \widetilde{\boldsymbol{\psi}}_{i} / 2\right) \tag{19}\\
=h^{m_{1}\left(m_{2}-1\right) / 2} \prod_{i=1}^{m_{1}} h_{i}^{\left(m_{2}-1\right) / 2} \exp \left[-\underline{h}_{\psi} h \sum_{i=1}^{m_{1}} h_{i} \sum_{j=1}^{m_{2}-1} \widetilde{\psi}_{i j}^{2} / 2\right] \tag{20}\\
=h^{m_{1}\left(m_{2}-1\right) / 2} \prod_{i=1}^{m_{1}} h_{i}^{\left(m_{2}-1\right) / 2} \\
\cdot \exp \left\{-\underline{h}_{\psi} h \widetilde{\boldsymbol{\psi}}^{\prime}\left[\operatorname{diag}\left(h_{1}, \ldots, h_{m_{1}}\right) \otimes \mathbf{I}_{m_{2}-1}\right] \widetilde{\boldsymbol{\psi}} / 2\right\} \tag{21}
\end{gather*}
$$

Conditional posterior distribution of h. From (14), (18), (20) and (7),

$$
\begin{aligned}
\bar{s}^{2} h & \sim \chi^{2}(\bar{\nu}) \\
\bar{s}^{2} & =\underline{s}^{2}+\zeta \underline{h}_{\phi} \widetilde{\boldsymbol{\phi}}^{\prime} \widetilde{\boldsymbol{\phi}}+\underline{h}_{\psi} \sum_{i=1}^{m_{1}} h_{i} \widetilde{\boldsymbol{\psi}}_{i}^{\prime} \widetilde{\boldsymbol{\psi}}_{i}+\sum_{t=1}^{T} \delta_{t} \varepsilon_{t}^{2}, \\
\bar{\nu} & =\underline{\nu}+\zeta\left(m_{1}-1\right)+m_{1}\left(m_{2}-1\right)+T .
\end{aligned}
$$

Conditional posterior distribution of the h_{i}. From (15), (20), and (7),

$$
\begin{aligned}
\bar{s}_{i}^{2} h_{i} & \sim \chi^{2}\left(\bar{\nu}_{i}\right) \\
\bar{s}_{i}^{2} & =\underline{s}_{1}^{2}+\underline{h}_{\psi} h \widetilde{\boldsymbol{\psi}}_{i}^{\prime} \widetilde{\boldsymbol{\psi}}_{i}+h \sum_{j=1}^{m_{2}} h_{i j} \sum_{t: s_{t}=(i, j)} \varepsilon_{t}^{2}, \\
\bar{\nu}_{i} & =\underline{\nu}_{1}+m_{2}-1+n T_{i}
\end{aligned}
$$

$\left(i=1, \ldots, m_{1}\right)$.
Conditional posterior distribution of the $h_{i j}$. From (16) and (7),

$$
\begin{aligned}
\bar{s}_{i j}^{2} h_{i j} & \sim \chi^{2}\left(\bar{\nu}_{i j}\right) ; \\
\bar{s}_{i j}^{2} & =\underline{s}_{2}^{2}+h \cdot h_{i} \cdot \sum_{t: s_{t}=(i, j)} \varepsilon_{t}^{2}, \\
\bar{\nu}_{i j} & =\underline{\nu}_{2}+U_{i j}
\end{aligned}
$$

$\left(i=1, \ldots, m_{1} ; j=1, \ldots, m_{2}\right)$.
Conditional posterior distribution of P. From (12), (7), and (4),

$$
p(\mathbf{P}) \propto \pi_{s_{11}} \prod_{i=1}^{m_{1}} \prod_{j=1}^{m_{1}} p_{i j}^{r_{1}+T_{i j}-1} \exp \left(-h \sum_{t=1}^{T} \delta_{t} \varepsilon_{t}^{2} / 2\right)
$$

Use a Metropolis within Gibbs step for each for each row i of \mathbf{P}. Draw the candidate $\mathbf{p}_{i}^{*} \sim \operatorname{Beta}\left(r_{1}+T_{i 1}, \ldots, r_{1}+T_{i m_{1}}\right)$, and let \mathbf{C}_{0}^{*} be the orthonormal complement of $\boldsymbol{\pi}^{*}$ corresponding to the resulting \mathbf{P}^{*}. Account must be taken of the fact that because $\varepsilon_{t}=y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}-\boldsymbol{\psi}_{\mathbf{s}_{t}}-\mathbf{z}_{t}^{1 /} \mathbf{C}_{0} \boldsymbol{\phi}, \mathbf{C}_{0}$ is a function of $\boldsymbol{\pi}$ and therefore of \mathbf{P}. Let \mathbf{C}_{0}^{*} be the orthonormal complement of $\boldsymbol{\pi}^{*}$ and compute $\varepsilon_{t}^{*}=y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}-\boldsymbol{\psi}_{\mathbf{s}_{t}}-\mathbf{z}_{t}^{1 /} \mathbf{C}_{0}^{*} \widetilde{\boldsymbol{\phi}}$. The Metropolis acceptance ratio is

$$
\frac{\pi_{s_{11}}^{*} \exp \left(-\zeta h \sum_{t=1}^{T} \delta_{t} \varepsilon_{t}^{* 2} / 2\right)}{\pi_{s_{11}} \exp \left(-\zeta h \sum_{t=1}^{T} \delta_{t} \varepsilon_{t}^{2} / 2\right)} .
$$

If the candidate is accepted, then \mathbf{P} is updated to $\mathbf{P}^{*}, \boldsymbol{\pi}$ to $\boldsymbol{\pi}^{*}$, and \mathbf{C}_{0} to \mathbf{C}_{0}^{*}.
The orthonormal complement of \mathbf{C}_{0} of $\boldsymbol{\pi}$ is not unique. As discussed in Section 2.1.2 nothing substantive in the model depends on which \mathbf{C}_{0} is used. However, if \mathbf{C}_{0} is not a smooth function of $\boldsymbol{\pi}$ then the candidate will be rejected more often than if it is, because $\mathbf{C}_{0} \widetilde{\phi}$ will change more. To construct a unique orthonormal complement \mathbf{C} that is a smooth function of a vector of probabilities $\boldsymbol{\pi}$ with $\sum_{i=1}^{m} \pi_{i}=1$, note that $\pi_{j} \in(0,1)$ with probability $1(j=1, \ldots, m)$. Construct a matrix \mathbf{C}^{*} as follows. The first column of \mathbf{C}^{*} is $c_{11}^{*}=\pi_{2}, c_{21}^{*}=-\pi_{1}, c_{i 1}^{*}=0(i=3, \ldots, m)$. The j 'th column of \mathbf{C}^{*} is $c_{i j}^{*}=\pi_{i}(i=1, \ldots, j), c_{j+1, j}^{*}=-\sum_{i=1}^{j} \pi_{i}^{2} / \pi_{j+1}, c_{i j}^{*}=0(i=j+2, \ldots, m)$. Construct \mathbf{C} from \mathbf{C}^{*} by normalizing the columns to each have Euclidian length 1.

Conditional posterior distribution of R. From (13), (7), and (5),

$$
p\left(\boldsymbol{\rho}_{j}\right) \propto \prod_{k=1}^{m_{2}} \rho_{j k}^{r_{2}+U_{j k}-1} \exp \left(-h \sum_{t: s_{t 1}=j} \delta_{t} \varepsilon_{t}^{2} / 2\right)
$$

Use a Metropolis within Gibbs step for each for each row j of \mathbf{R}. Note that in $\varepsilon_{t}=$ $y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}-\boldsymbol{\phi}_{\mathbf{s}_{t}}-\mathbf{z}_{t}^{\prime} \mathbf{C} \tilde{\boldsymbol{\psi}}, \mathbf{C}_{j}$ is a function of $\boldsymbol{\rho}_{j}$ whenever $s_{t 1}=j$. Draw the candidate $\boldsymbol{\rho}_{j}^{*}$ from $\operatorname{Beta}\left(r_{2}+U_{j 1}, \ldots, r_{2}+U_{j, m_{2}}\right)$. Let \mathbf{C}_{j}^{*} be the orthonormal complement of $\boldsymbol{\rho}_{j}^{*}$. For all t for which $s_{t 1}=j$, compute $\varepsilon_{t}^{*}=y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}-\boldsymbol{\phi}_{\mathbf{s}_{t}}-\mathbf{z}_{t}^{\prime} \mathbf{C}^{*} \tilde{\boldsymbol{\psi}}$. The Metropolis acceptance ratio is

$$
\frac{\exp \left(-h \sum_{t: s_{t 1}=j} \delta_{t} \varepsilon_{t}^{* 2} / 2\right)}{\exp \left(-h \sum_{t: s_{t 1}=j} \delta_{t} \varepsilon_{t}^{2} / 2\right)}
$$

The Metropolis step is used only after the first 1,000 iterations.
Conditional posterior distribution of γ. Recall that $y_{t}=\mathbf{w}_{t}^{\prime} \gamma+\varepsilon_{t}$, with $\gamma^{\prime}=$ $\left(\boldsymbol{\beta}^{\prime}, \tilde{\boldsymbol{\phi}}^{\prime}, \tilde{\boldsymbol{\psi}}^{\prime}\right)$ and

$$
\begin{equation*}
\mathbf{w}_{t}^{\prime}=\left(\mathbf{x}_{t}^{\prime}, \mathbf{z}_{t}^{1 \prime} \mathbf{C}_{0}, \mathbf{z}_{t}^{\prime} \mathbf{C}\right) . \tag{22}
\end{equation*}
$$

From (11), (17), (21) and (10),

$$
\gamma \sim N\left(\bar{\gamma}, \overline{\mathbf{H}}_{\gamma}^{-1}\right), \quad \overline{\mathbf{H}}_{\gamma}=\underline{\mathbf{H}}_{\gamma}+h \sum_{t=1}^{T} \delta_{t} \mathbf{w}_{t} \mathbf{w}_{t}^{\prime}
$$

where

$$
\underline{\mathbf{H}}_{\gamma}=\left[\begin{array}{ccc}
\mathbf{H}_{\beta} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \underline{\mathbf{H}}_{\phi} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \underline{\mathbf{H}}_{\psi}
\end{array}\right],
$$

with

$$
\underline{\mathbf{H}}_{\phi}=\underline{h}_{\phi} h \mathbf{I}_{m_{1}-1} \text { and } \underline{\mathbf{H}}_{\psi}=\underline{h}_{\psi} h \operatorname{Diag}\left(h_{1}, \ldots, h_{m_{1}}\right) ;
$$

the mean is $\bar{\gamma}=\overline{\mathbf{H}}_{\gamma}^{-1} \overline{\mathbf{c}}_{\gamma}$ with

$$
\overline{\mathbf{c}}_{\gamma}=\underline{\mathbf{c}}_{\gamma}+h \sum_{t=1}^{T} \mathbf{w}_{t} y_{t} \delta_{t}, \underline{\mathbf{c}}_{\gamma}^{\prime}=\left(\underline{\boldsymbol{\beta}}^{\prime} \underline{\mathbf{H}}_{\beta}^{\prime}, \mathbf{0}^{\prime}\right) .
$$

Drawing the state matrix \mathbf{S}. The final step of the MCMC algorithm is the draw of the $T \times 2$ matrix of latent states from its distribution conditional on the parameters $\boldsymbol{\theta}$ and observed \mathbf{X} and \mathbf{Y}. Define

$$
\begin{aligned}
d_{t i j} & =p\left[y_{t} \mid \mathbf{s}_{t}=(i, j), \mathbf{x}_{t}, \boldsymbol{\theta}\right] \\
& =(2 \pi)^{--1 / 2}\left(h h_{i} h_{i j}\right)^{1 / 2} \exp \left[-h h_{i} h_{i j}\left(y_{t}-\boldsymbol{\beta}^{\prime} \mathbf{x}_{t}-\phi_{i}-\psi_{i j}\right)^{2} / 2\right]
\end{aligned}
$$

and

$$
d_{t i}=p\left(y_{t} \mid s_{t 1}=i, \mathbf{x}_{t}, \boldsymbol{\theta}\right)=\sum_{j=1}^{m_{2}} \rho_{i j} d_{t i j} .
$$

We draw $\mathbf{s} \sim P(\mathbf{s} \mid \mathbf{X}, \mathbf{y}, \boldsymbol{\theta})$ as a two step marginal-conditional, $\mathbf{s}^{1} \sim P\left(\mathbf{s}^{1} \mid \mathbf{X}, \mathbf{y}, \boldsymbol{\theta}\right)$ followed by $\mathbf{s}^{2} \sim P\left(\mathbf{s}^{2} \mid \mathbf{s}^{1}, \mathbf{X}, \mathbf{y}, \boldsymbol{\theta}\right)$. First, given $d_{t i}\left(t=1, \ldots, T, i=1, \ldots, m_{1}\right)$ and \mathbf{P}, the algorithm of Chib (1996) draws $\mathbf{s}^{1} \sim P\left(\mathbf{s}^{1} \mid \mathbf{X}, \mathbf{y}, \boldsymbol{\theta}\right)$ and provides $p(\mathbf{y} \mid \boldsymbol{\theta})$ as a byproduct of the computations. Then the transitory states $s_{t 2}$ are conditionally independent with $P\left(s_{t 2}=j \mid s_{t 1}=i, y_{t}, \mathbf{x}_{t}, \boldsymbol{\theta}\right) \propto \rho_{i j} d_{t i j}$.

References

Chib S. 1996. Calculating posterior distributions and modal estimates in Markov mixture models. Journal of Econometrics 75: 79-97.

Rao CR. 1965. Linear Statistical Inference and Its Applications. New York: Wiley.
Rydén T, Teräsvirta T, Åsbrink S. 1998. Stylized facts of daily return series and the hidden Markov model. Journal of Applied Econometrics 13: 217-244.

