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Proofs of Theorems

Proof of Theorem 1

Using the methods of Ryden et al. (1998) for the Markov normal mixture model,

cov (yt; yt�s j x1; : : : ;xT ) = �0Bs0�� = �0�Bs� (s = 1; 2; : : :) , (1)

where � =diag(�);B = P� em1�
0, which establishes su¢ ciency.

If the eigenvalues of P are distinct then P is diagonable and it has spectral decom-
position P = Q�1�Q, where the matrix � =diag (�1; : : : ; �m1) contains the ordered
eigenvalues �j of P, j�1j � j�2j � j�3j � : : : j�m1j. The matrix Q has orthogonal
columns and we may take

Q = [q1;q2; : : : ;qm]
0 = [�;q2; : : : ;qm]

0 ,

Q�1 =
�
q1;q2; : : : ;qm

�
=
�
em;q

2; : : : ;qm
�
.

If P is also irreducible and aperiodic then �1 = 1 > j�2j and we may write

B = Q�1�Q� q1q01 = Q�1e�Q (2)

where e� = diag (0; �2; : : : ; �m1). From (1) absence of serial correlation is equivalent
to

�0�Q�1e�sQ� =0 (s = 1; 2; : : :) .

The �rst element of Q� is q01� = �
0� =0, and so

�0�Q�1�sQ� =0 (s = 1; 2; : : :) . (3)

De�ne the m1 �m1 matrix

D =

26664
�1 �2 � � � �m1

�21 �22 � � � �2m1
...

...
...

�m1
1 �m1

2 � � � �m1
m1

37775 ,

whose determinant is

 
m1Y
i=1

�i

!m1Y
i<j

(�i � �j) 6= 0 (Rao (1965), p 28). Let A = D�1

and let �i;j denote the Kronecker delta function; then

m1X
s=1

ais�
s
j = �i;j =)

m1X
i=1

m1X
s=1

ais�
s = Im1 (i = 1; : : : ;m1) ,

2



and from (3)
m1X
i=1

m1X
s=1

ais�
0�Q�1�sQ� = �0�� =

mX
i=1

�2i�i = 0.

Proof of Theorem 2

The instantaneous variance matrix �(p)0 is immediately attained by considering

�
(p)
0 = E

h
z
(p)
t � ��(p)

i h
z
(p)
t � ��(p)

i0
= E

�
z
(p)
t z

(p)0
t

�
� ��(p)��(p)0

=
mX
j=1

�j

h
z
(p)
t z

(p)0
t j st = j

i
� ��(p)��(p)0

=
mX
j=1

�j

�
R
(p)
j + �

(p)
j �

(p)0
m

�
� ��(p)��(p)0:

The dynamic covariance matrices �(p)u (p > 0) are obtained by conditioning on st and
st�u, exploiting serial independence of observables after conditioning on the states,
and then by marginalizing out the states:

�(p)u = cov
�
z
(p)
t ; z

(p)
t�u

�
= E

�
z
(p)
t z

(p)0
t�u

�
� ��(p)�(p)0

=
mX
j=1

mX
i=1

E
�
z
(p)
t z

(p)0
t�u j st = j; st�u = i

�
[Pu]ij �i �M(p)��0M(p)0

=
mX
j=1

mX
i=1

E
�
z
(p)
t j st = j

�
E
�
z
(p)0
t�u j st = i

�
[Pu]ij �i �M(p)��0M(p)0

=
mX
j=1

mX
i=1

�
(p)
j �

(p)0
i [Pu]ij �i � �(p)e0m�M

(p)0 =M(p)Bu0�M(p)0;

where Bu = (P� em�0)u = Pu � em�0.

Proof of Theorem 3

Adopt the notation in the proof of Theorem 2. From (2), Bu =
Pm

j=2 �
u
jq

jq0j.

Substituting in the expression for �(p)u in the statement of the theorem,

�(p)u =

mX
j=2

�ujM
(p)qjq

j0M(p)0 =
r+1X
j=2

�ujA
0
j (u = 1; 2; 3; : : :)

where

A0
j =

X
h2Hj

M(p)qhq
h0M(p)0, Hj =

�
h : q0hP =�jq

0
h; M

(p)qh 6= 0
	
.:
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Observe that r is the number of distinct eigenvalues of P with modulus in the open
unit interval associated with as least one column of Q0 not in the column null space
ofM(p). In other words, r can be less than m� 1 because some eigenvalues are equal
to zero (as in the compound Markov model interpreted as having m = m1m2 states),
because some eigenvalues are repeated, or because some eigenvalues are associated
with columns of Q0 all in the column null space of M(p).
De�ne now a stochastic process v(p)t with autocovariances ~�(p)u =

Pr+1
j=2 �

u
jA

0
j

(u > 0) and ~�(p)0 =
Pr+1

j=2A
0
j. Then for u > 0, ~�

(p)
u = �

(p)
u , while

~�
(p)
0 =

r+1X
j=2

A0
j =

mX
j=1

�
(p)
j �

0(p)
j �j � ��(p)��(p)0:

Notice that the matrix �(p)0 � ~�(p)0 =
Pm

j=1R
(p)
j �j is positive (semi) de�nite, since

each R(p)
j is a variance matrix.

Given that there are r distinct eigenvalues of P, �2; : : : ; �r+1, with modulus in
the open unit interval, contributing to the determination of �(p)u = ~�

(p)
u , there exists

a unique set of constants �1; : : : ; �r such that

�rj �
rX
i=1

�i�
r�i
j = 0 (j = 2; : : : ; r + 1) :

The coe¢ cients �1; : : : ; �r determine a degree r polynomial whose roots are �
�1
2 ; : : : ; ��1r .

Thus for all u > r,

~�(p)u �
rX
i=1

�i~�
(p)
u�i =

r+1X
j=2

�ujA
0
j �

rX
i=1

�i

r+1X
j=2

�u�ij A0
j

=
r+1X
j=2

 
�uj �

rX
i=1

�i�
u�i
j

!
A0
j = 0:

The autocovariance function of
n
v
(p)
t

o
therefore satis�es the Yule-Walker equa-

tions for a VAR(r) process with coe¢ cient matrices �iInp (i = 1; : : : ; r).
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Details of the Markov chain Monte Carlo algorithm

Let s1 = (s11; : : : ; sT1)
0. Then

p
�
s1 j X

�
= �s11

TY
t=2

pst�1;1st1 = �s11

m1Y
i=1

m1Y
j=1

p
Tij
ij ; (4)

where Tij is the number of transitions from persistent state i to j in s1. The n � n
Markov transition matrix P is irreducible and aperiodic, and � = (�1; : : : ; �m1)

0 is
the unique stationary distribution of fst1g. Let s2 = (s12; : : : ; sT2)

0 denote all T
transitory states. Then

p
�
s2 j s1;X

�
=

TY
t=1

�st =

m1Y
i=1

m2Y
j=1

�
Uij
ij : (5)

where Uij is the number of occurrences of st = (i; j) (t = 1; : : : ; T ).
The observables yt depend on the latent states st and the deterministic variables

xt. If st = (i; j) then

yt = �
0xt + �i +  ij + "t; "t s N

�
0; (h � hi � hij)�1

�
: (6)

Conditional on (xt; st) (t = 1; : : : ; T ) the yt are independent. From (6) one expression
for this distribution is

p (y j s;X) = (2�)�Tn=2 hT=2
m1Y
i=1

h
Tin=2
i

m2Y
j=1

h
Uijn=2
ij

� exp

24�h m1X
i=1

hi

m2X
j=1

hij
X

t:st=(i;j)

"2t=2

35 ; (7)

The unconditional mean of the transitory states within each permanent state is
0, which is equivalent to  0i�i = 0 (i = 1; : : : ;m1). Let Cj be an m2 � (m2 � 1)
orthonormal complement of �j, de�ne the (m2 � 1) � 1 vectors e 0j = C0j j, and

note that  j = Cj
e j (j = 1; : : : ;m1). Construct the m1m2 � m1 (m2 � 1) block

diagonal matrix C = Blockdiag [C1; : : : ;Cm1 ] and the m1 (m2 � 1) � 1 vector e =�e 0

1; : : : ;
e 0m1

�0
. Then  = Ce , and substituting in equation (7) at the end of

Section 2.1.1,
yt = �

0xt + e�0C0
0z
1
t +

e 0C0zt + "t: (8)
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This expression has the form yt = 
 0wt + "t in which the (k +m1m2 � 1) � 1
vector 
 =

�
�0; ~�

0
; e 0�0 and

w0
t =

�
x0t; z

10
t C0; z

0
tC
�
: (9)

Thus conditional on the latent states st (equivalently z1t and z
2
t ) (t = 1; : : : ; T ), and

given the restrictions on the state means, (6) is a linear regression model with highly
structured heteroscedasticity. If we take �t = hst1hst, then

p (y j s;X) = (2�)�T=2 hT=2
TY
t=1

�
n=2
t exp

"
�

TX
t=1

h�t"
2
t=2

#

= (2�)�T=2 hT=2
TY
t=1

�
n=2
t

� exp
"
�h

TX
t=1

�t (yt �w0
t
)

2
=2

#
: (10)

The kernel of the prior density is the product of the following expressions.

p (�) / exp
h
�
�
� � �

�0
H�

�
� � �

�
= 2
i

(11)

p (pi) /
m1Y
j=1

pr1�1ij (i = 1; : : : ;m1) (12)

p (�i) /
m2Y
j=1

�r2�1ij (i = 1; : : : ;m1) (13)

p (h) / h(��1)=2 exp
�
�s2h=2

�
(14)

p (hi) / h
(�1�1)=2
i exp

�
�s21hi=2

�
(i = 1; : : : ;m1) (15)

p (hij) / h
(�2�1)=2
ij exp

�
�s22hij=2

�
(i = 1; : : : ;m1; j = 1; : : : ;m2) (16)

p
�e� j h� / h(m1�1)=2 exp

�
�h�he�0e�=2� (17)

= h(m1�1)=2 exp

 
�h�h

m1�1X
i=1

e�2i =2
!

(18)

p
�e i j hi; h

�
/ (h � hi)(m2�1)=2

� exp
�
�h hihe 0ie i=2

�
(i = 1; : : : ;m1)
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p
�e j h1; : : : ; hm; h�

/ hm1(m2�1)=2
m1Y
i=1

h
(m2�1)=2
i exp

 
�h h

m1X
i=1

hie 0ie i=2

!
(19)

= hm1(m2�1)=2
m1Y
i=1

h
(m2�1)=2
i exp

"
�h h

m1X
i=1

hi

m2�1X
j=1

e 2ij=2
#

(20)

= hm1(m2�1)=2
m1Y
i=1

h
(m2�1)=2
i

� exp
n
�h he 0 [diag (h1; : : : ; hm1)
 Im2�1]

e =2o (21)

Conditional posterior distribution of h. From (14), (18), (20) and (7),

s2h s �2 (�) ;

s2 = s2 + �h�
e�0e�+ h 

m1X
i=1

hie 0ie i +
TX
t=1

�t"
2
t ,

� = � + � (m1 � 1) +m1 (m2 � 1) + T:

Conditional posterior distribution of the hi. From (15), (20), and (7),

s2ihi s �2 (�i) ;

s2i = s21 + h h
e 0ie i + h

m2X
j=1

hij
X

t:st=(i;j)

"2t ,

�i = �1 +m2 � 1 + nTi

(i = 1; : : : ;m1).
Conditional posterior distribution of the hij. From (16) and (7),

s2ijhij s �2 (�ij) ;

s2ij = s22 + h � hi �
X

t:st=(i;j)

"2t ,

�ij = �2 + Uij

(i = 1; : : : ;m1; j = 1; : : : ;m2).
Conditional posterior distribution of P. From (12), (7), and (4),

p (P) / �s11

m1Y
i=1

m1Y
j=1

p
r1+Tij�1
ij exp

 
�h

TX
t=1

�t"
2
t=2

!
:
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Use a Metropolis within Gibbs step for each for each row i of P. Draw the candi-
date p�i s Beta (r1 + Ti1; : : : ; r1 + Tim1), and let C

�
0 be the orthonormal complement

of �� corresponding to the resulting P�. Account must be taken of the fact that
because "t = yt ��0xt � st � z10t C0

e�, C0 is a function of � and therefore of P. Let
C�0 be the orthonormal complement of �

� and compute "�t = yt��0xt� st�z10t C�
0
e�.

The Metropolis acceptance ratio is

��s11 exp
�
��h

PT
t=1 �t"

�2
t =2

�
�s11 exp

�
��h

PT
t=1 �t"

2
t=2
� :

If the candidate is accepted, then P is updated to P�, � to ��, and C0 to C�0.
The orthonormal complement of C0 of � is not unique. As discussed in Section

2.1.2 nothing substantive in the model depends on which C0 is used. However, if C0

is not a smooth function of � then the candidate will be rejected more often than if
it is, because C0

e� will change more. To construct a unique orthonormal complement
C that is a smooth function of a vector of probabilities � with

Pm
i=1 �i = 1, note that

�j 2 (0; 1) with probability 1 (j = 1; : : : ;m). Construct a matrix C� as follows. The
�rst column of C� is c�11 = �2, c�21 = ��1, c�i1 = 0 (i = 3; : : : ;m). The j�th column
of C� is c�ij = �i (i = 1; : : : ; j), c�j+1;j = �

Pj
i=1 �

2
i =�j+1, c

�
ij = 0 (i = j + 2; : : : ;m).

Construct C from C� by normalizing the columns to each have Euclidian length 1.
Conditional posterior distribution of R. From (13), (7), and (5),

p
�
�j
�
/

m2Y
k=1

�
r2+Ujk�1
jk exp

 
�h

X
t:st1=j

�t"
2
t=2

!
.

Use a Metropolis within Gibbs step for each for each row j of R. Note that in "t =
yt��0xt��st � z0tC~ , Cj is a function of �j whenever st1 = j. Draw the candidate
��j from Beta (r2 + Uj1; : : : ; r2 + Uj;m2). Let C

�
j be the orthonormal complement of

��j . For all t for which st1 = j, compute "�t = yt��0xt��st � z0tC�~ :The Metropolis
acceptance ratio is

exp
�
�h
P

t:st1=j
�t"

�2
t =2

�
exp

�
�h
P

t:st1=j
�t"2t=2

� :
The Metropolis step is used only after the �rst 1,000 iterations.
Conditional posterior distribution of 
. Recall that yt = w0

t
 + "t, with 
 0 =�
�0; ~�

0
; ~ 

0�
and

w0
t =

�
x0t; z

10
t C0; z

0
tC
�
: (22)

From (11), (17), (21) and (10),


 s N
�

;H

�1



�
; H
 = H
 + h

TX
t=1

�twtw
0
t
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where

H
 =

24 H� 0 0
0 H� 0
0 0 H 

35 ,
with

H� = h�hIm1�1and H = h hDiag (h1; : : : ; hm1) ;

the mean is 
 = H
�1

 c
 with

c
 = c
 + h
TX
t=1

wtyt�t, c0
 =
�
�0H0

�;0
0� :

Drawing the state matrix S. The �nal step of the MCMC algorithm is the draw of
the T � 2 matrix of latent states from its distribution conditional on the parameters
� and observed X and Y. De�ne

dtij = p [yt j st = (i; j) ;xt;�]

= (2�)��1=2 (hhihij)
1=2 exp

h
�hhihij

�
yt � �0xt � �i �  ij

�2
= 2
i

and

dti = p (yt j st1 = i;xt;�) =

m2X
j=1

�ijdtij.

We draw s sP (s j X;y;�) as a two step marginal-conditional, s1 s P (s1 j X;y;�)
followed by s2 s P (s2 j s1,X;y;�). First, given dti (t = 1; : : : ; T; i = 1; : : : ;m1) and
P, the algorithm of Chib (1996) draws s1 s P (s1 j X;y;�) and provides p (y j �)
as a byproduct of the computations. Then the transitory states st2 are conditionally
independent with P (st2 = j j st1 = i; yt;xt;�) _ �ijdtij.
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