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Proofs of Theorems

Proof of Theorem 1

Using the methods of Ryden et al. (1998) for the Markov normal mixture model,

cov (Yg, Yo—s | X1, .., X)) = ¢'B5,Hq§ =¢'TIB° ¢ (s=1,2,...), (1)

where IT =diag(w), B = P — e,,, @', which establishes sufficiency.

If the eigenvalues of P are distinct then P is diagonable and it has spectral decom-
position P = Q' AQ, where the matrix A =diag (\1,..., Ay, ) contains the ordered
eigenvalues \; of P, |Ai| > |2 > [A3] > ...|[An,|. The matrix Q has orthogonal
columns and we may take

Q=lq,d, ) = [T do. ., ,
Q= [ a"] = [emat....q"].

If P is also irreducible and aperiodic then Ay = 1 > |\2| and we may write
B=Q 'AQ-d'd; =Q'AQ (2)

where A = diag (0, A2, ..., Am,). From (1) absence of serial correlation is equivalent
to

HPTQ 'A°Qp =0 (s=1,2,...).
The first element of Q¢ is qj¢ = w'¢ =0, and so

PTIQ 'A°Qp =0 (s=1,2,...). (3)
Define the m; x m; matrix
A A A
LA
XA A

mi mi
whose determinant is (H )\l) H (A — ;) # 0 (Rao (1965), p 28). Let A=D""!
i=1 i<j
and let d; ; denote the Kronecker delta function; then

mi m1 mi
Zais)‘j‘:éi,j — ZZCLiSAS:Iml (izl,...,ml),
s=1 =1 s=1



and from (3)

m1 mi

D adTIQ 'A°Qep = ¢'Tigp = Zm—o

i=1 s=1

Proof of Theorem 2
(p)

The instantaneous variance matrix Iy’ is immediately attained by considering
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The dynamic covariance matrices Ty (p > 0) are obtained by conditioning on s, and
S¢—u, exploiting serial independence of observables after conditioning on the states,
and then by marginalizing out the states:

TP = cov (ng’zgmu) _E (ngzgmu) Ol
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where B* = (P —e,,w')" = P* — e, 7.
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Proof of Theorem 3

Adopt the notation in the proof of Theorem 2. From (2), B* = Z;n:z )\}qu q;-

(p)

Substituting in the expression for I';,’ in the statement of the theorem,

r+1

Z)\“ g/ MP = " \“A (u=1,2,3,...)
j=2

where

— Z M®q, g M@, H; = {h L, P =\, M©Pq,, #£ 0} §

hGHj



Observe that r is the number of distinct eigenvalues of P with modulus in the open
unit interval associated with as least one column of Q' not in the column null space
of M), In other words, r can be less than m — 1 because some eigenvalues are equal
to zero (as in the compound Markov model interpreted as having m = myms states),
because some eigenvalues are repeated, or because some eigenvalues are associated
with columns of Q' all in the column null space of M(®),

Define now a stochastic process v§p ) with autocovariances ") = ZTH AFAL

J=271
(u>0) and TP = Z;S A’;. Then for u > 0, I =1 while

r+1

fgp) _ ZA/ Z “gp)u;(p M*(p)“*(p)/'

Notice that the matrix T") — T = > R;p )7r; is positive (semi) definite, since

each Rg-p ) is a variance matrix.

Given that there are r distinct eigenvalues of P, Ao, ..., A1, with modulus in
the open unit interval, contributing to the determination of T") = T there exists
a unique set of constants aq, ..., «, such that

=) N TT=0 (j=2,...,r41).
=1

The coefficients ay, . . . , o determine a degree r polynomial whose roots are \; L A, L
Thus for all u > r,

r r+1

r r+1
XU TR BRIV S BRI
i=1 =2 i=1  j=2
r+1 r
(A}‘ -y aiA;—i> A =0.
=1

Jj=2

The autocovariance function of {vﬁ” )} therefore satisfies the Yule-Walker equa-

tions for a VAR(r) process with coefficient matrices o;1,, (i=1,...,7).



Details of the Markov chain Monte Carlo algorithm

Let S1 = (SH, Ce ,STl)/. Then

T mi1 mi
Ti;
P (Sl | X) = Tsyy Hpst—l,lstl = Tsyy H Hpij]7 (4)
t=2 i=1 j=1
where T; is the number of transitions from persistent state i to j in s*. The n x n
Markov transition matrix P is irreducible and aperiodic, and 7 = (71,...,Tp,) is
the unique stationary distribution of {s;1}. Let s2 = (s12,...,572) denote all T

transitory states. Then

T mi m2
Uij
p(SQ | SlaX) :Hpst:HHpij]' (5)
t=1 i=1 j=1
where U;; is the number of occurrences of s, = (i,j) (t=1,...,T).

The observables y; depend on the latent states s; and the deterministic variables
x;. If ¢ = (4, j) then

Y = ,let + ¢Z + wij +ey; e~N [07 (h “hi - hij)_l} . (6)

Conditional on (x¢,s;) (t =1,...,T) the y; are independent. From (6) one expression
for this distribution is

mi ma
p(y | 8,X) = (2n) "2 R 2 T e

- exp —hihiihij > g2, (7)
i=1  j=1

t:St:(imj)

The unconditional mean of the transitory states within each permanent state is
0, which is equivalent to ¥;p, = 0 (i=1,...,m;). Let C; be an my X (my — 1)
orthonormal Complerilent of p;, define the (my — 1) x 1 vectors 'gb; = Cjp;, and
note that ¢, = C;v; (j =1,...,mq). Construct the mymsy X my (mg — 1) block
diagonal matrix C = Blockdiag [Cy, ..., C,,,| and the m;y (ms — 1) x 1 vector @ =

Y ~ / ~

<¢1, o ,'l,bm) . Then 9 = Ca1, and substituting in equation (7) at the end of
Section 2.1.1,

Y = B'x + (Z/C()Ztl + @/C,Zt + & (8)



This expression has the form y; = v'w; + €, in which the (k +mimy —1) x 1
~ ~ !/
vector v = (B’, é 1,b,> and

w, = (x},2,'Co,z,C) . (9)
Thus conditional on the latent states s; (equivalently z; and z?) (t = 1,...,T), and
given the restrictions on the state means, (6) is a linear regression model with highly
structured heteroscedasticity. If we take §; = hg, hs,, then

T T
p(y | s,X) = (2r) "2 pT/? H 572 exp [— Z hétef/Ql
t=1

t=1

T
= (27) T2 pTI2 H 5,/

- exp [ hZ(St - wyy) /2] : (10)

The kernel of the prior density is the product of the following expressions.

p(B) xexp |- (8- 8) Hy (8- B) /2| (11)
»(pi) och” Loi=1,...,m) (12)
p(pz) X Hp:j ' (Z =1, aml) (13)
p(h) oc R« D2 exp (—57h/2) (14)
p(h;) hgzl*l)/ exp (—s7hi/2) (1=1,...,mq) (15)
p (hij) h%’rl)m exp ( s2hw/2)
(t=1,....m1; 7 =1,...,m2) (16)
p(&1h) o A2 exp (~hyh 3/2) ()

mi—1
=1
p (17)1 | hmh) x (h - hi)(mz—l)/z

- exp (—hwhih&;’ﬁziﬂ)
(i=1,...,my)



p({b ‘ h17"'7hM7h)
my
o pm(me=1)/2 H p{m2D2 oy <—ﬁ¢h Z hi¢;¢i/2> (19)

=1

mi mz—1
_ gm0 T e expl hthh > wm] (20)

i=1

_ hml(mgfl)/Q H hgmgfl)/Q

i=1
~ ~
exp {—h, b (diag (hn, ... ) © T, 1] /2] (21)
Conditional posterior distribution of h. From (14), (18), (20) and (7),
5h~ X2 ()
e mi . T
5 =52+ Chyd b+ hy Z hibab; + Z 5,22,
:y—l—g(ml—l)—l—ml(mg—l)—i—T

Conditional posterior distribution of the h;. From (15), (20), and (7),

Sthi ~ X2 (74) 5
ma2
S =t hhph, +hY hy Y €l
J=1  tise=(i,j)
vi=vyt+mg—1+nT;

(Z: 1,...,m1).
Conditional posterior distribution of the h;;. From (16) and (7),

Syhis ~ X* (Tig)
S =ss+h-hi- > g,
t:st=(%,5)
Vij =Yy + Uy
(izl,...7m1;j:1,...,m2).
Conditional posterior distribution of P. From (12), (7), and (4),

mi1 mi T
p(P) o< myp, H HprﬁT” exp (—h Z 5t6?/2> :
=1 j=1 t=1



Use a Metropolis within Gibbs step for each for each row ¢ of P. Draw the candi-
date pf ~ Beta (r; + Tj1,...,71 4+ Tim, ), and let C be the orthonormal complement
of m* corresponding to the resulting P*. Account must be taken of the fact that
because &, = y; — B'x, — ¥, — 2z, Co¢p, Cy is a function of 7 and therefore of P. Let
C; be the orthonormal complement of 7r* and compute ef = y, — B'x, — b, — 2’ Ci.
The Metropolis acceptance ratio is

Tk exp (—Ch ST 5t5;"2/2>
Tsy, €XP (—Ch Ele 5t5?/2> .

If the candidate is accepted, then P is updated to P*, w to 7*, and C, to Cj.

The orthonormal complement of Cy of 7r is not unique. As discussed in Section
2.1.2 nothing substantive in the model depends on which Cj is used. However, if C
is not a smooth function of 7 then the candidate will be rejected more often than if
it is, because Cy¢ will change more. To construct a unique orthonormal complement
C that is a smooth function of a vector of probabilities 7« with } ", m; = 1, note that
mj € (0,1) with probability 1 (j =1,...,m). Construct a matrix C* as follows. The
first column of C* is ¢}, = 3, ¢5; = —my, ¢j; = 0 (i =3,...,m). The j'th column
of Criscl =m (i=1,...,7), ;= —> 0 7 /T, ¢ =0 (i=j7+2,...,m).
Construct C from C* by normalizing the columns to each have Euclidian length 1.

Conditional posterior distribution of R. From (13), (7), and (5),

m2
p(p;) o< [T o™ exp (—h > 5t6?/2> :
k=1

t:sg1=j

Use a Metropolis within Gibbs step for each for each row j of R. Note that in ¢, =
Y — B'xy — g, — zQC{Z;, C; is a function of p; whenever s;; = j. Draw the candidate
p; from Beta (ry + Uj1,...,72 + Ujm,). Let Cj be the orthonormal complement of
p;. For all t for which sy = j, compute £; = y; — B'x; — g, — zQC*{b.T he Metropolis
acceptance ratio is

exp (—h D ben—i (5t€;‘2/2)
exp (—h D tsn—j 5@?/2) .

The Metropolis step is used only after the first 1,000 iterations.
Conditional posterior distribution of ~. Recall that y, = wivy + &, with v/ =

(5’, @ {b') and

w, = (x},2,'Co,z,C) . (22)
From (11), (17), (21) and (10),

T
'YNN(W,E,;l), ﬁ’y:H,}/‘i‘hZ(gtWtW;

t=1



where

H, 0 0
Efy = O Eqﬁ O b
0 0 H,

with
ﬂ¢ = @(thml_land ﬂd, = Qd,h Diag (hy, ..., hpm,) ;

the mean is 5 = H,, 167 with

T
Cy=c¢c, + hZWtyt(Sta Ely = (Q/HIB’ OI) :

t=1

Drawing the state matriz S. The final step of the MCMC algorithm is the draw of
the T' x 2 matrix of latent states from its distribution conditional on the parameters
0 and observed X and Y. Define

dyij :P[Z/t ’ St = (iaj) ,Xt>0]
= (QW)__I/z (hhihij)1/2 exp [_hhihij (yt - ﬁlxt — ¢; — %)2 / 2]

and

m2
dii =p (Ye | sn = i,%,0) = Zpijdtij-
j=1

We draw s ~P (s | X,y,0) as a two step marginal-conditional, s! ~ P (s' | X,y, )
followed by s? ~ P (s? | s!,X,y, ). First, given dy; (t=1,...,T,i=1,...,m;) and
P, the algorithm of Chib (1996) draws s' ~ P (s' | X,y,0) and provides p(y | 0)
as a byproduct of the computations. Then the transitory states s;» are conditionally
independent with P (s = j | 81 = 4,41, Xy, 0) o< p;;dsi-
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