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B Proofs

Proof of Theorem ?7. 1 consider a sequence {.J,, : n > 1} and show that plimnﬁooﬁun = f1o.

First, m*(V*, 51, h) is linear in ; so

M*(B14,, 1o, 70,1,) — M*(B1,ho, 70.1,)

= E(70,,(0:)(Yi — hyo(6;) — 51J (Xi = he
— E(70,1, (0:) (Yi = hy0(0:) — B1(Xi — hao(
= ~Qis, (Br. = 51)

0(0)) (X = hao(65)))
0:)))(Xi — heo(60:)))

Since, by assumption, equation (??) holds for 1y with E(e; | X;,60;) = 0, Y; — hy0(6;) —
B1o(Xi — heo(8;)) = e; and

M*(Bro, ho, 70.7) = E(70,.5(0:)ei(Xi — hao(0:)))
= E(70,s(0:) E(ei | Xi,0:)(Xi — hao(6:))) =0

Then, since ) ; is invertible by Assumption ??(b), Bl]n — Pio = —QS:]iM*(BlJn, hy, 79.s,)

and hence for any € > 0

Pr(|p1, = Brol > €) < Pr(|Q5 411 |M* (Brs,. ho, 70,5,)| = €) < Pr(IM*(Brs, ho, 70,4,)| = ce)

where the second inequality follows from the bound on | |QS:]1 || provided by Assumption ??(b).
It will thus be sufficient to show that Pr(|M*(3ys,,ho,70.5,)] > €) — 0 as n — oo for all
e > 0.

By the triangle inequality, [A/*(1,, ho, 70,7,)| < | My (Brs,, &,10) — M*(Brs,, ho, T0.7,)| +
| M, (B, &, w)|. T will first show that

M, (Bis,, &) — M*(B1s,, ho, 70.1,)| = 0,(1) (B.1)

using the following decomposition

‘Mn(BlJnvng) — M*(BlJnah(),TO,Jn” (B.2)
< ’M(Bun,g,wo Jn) - *(Bun,hoﬂ'o Jn)’ + ’M(Bun,g,w) - M(BlJnag:wo,Jn)’
+ | M (B, 8, 0) — M(Bu,, 80)| + |Ma(Buy,, 8 0) — M(Bry,, 8,0)|

Define &(f81) = Y; — 8iX; and (1) = (1,8])' and let & = &(B1y) and 4 = ¥(B1s). Then



M (B, g, w) = E(w(M;;)(&(B1) — v(61)'8(Mis))(Xi — go(Mis))) so

| M (B, & W) — M(Bry,, 8 0)| < |B((M;,)&(92(Mig,) — Go(M;1,)))

mEM mEM

where the second inequality follows for some constant C' > 0 by (a), (c), and (d) of Assump-

tion ?7. Then, using Theorem C.1 and Assumption ??(d), for any € > 0,

Pr(|M (B, 8,10) — M(Byy,, & )| > ¢)

fSPT<C7<1+ SMDIQOHH+-Sup|§UnN> sup|§0n)—g0nﬂr>s>

meMs, meMs, meMs,

+ (1 — Pr(M cC M51)> -0
Next,

M (B14,, 8 w0,1,) — M*(ffun, ho, 70,7,)] (B.4)
< B (Juwo,, (Vg )| (& = &(Mi,))(X; = 3a(M,))
— (& = 7802, (00)(X — 351, (0))])
Ewo,g, (¥is,) = 10,1, (P, (O)II(& = /852, (6)) (X — 3251, (6))])

By Assumption ??(a), the first term in equation (B.4) is bounded by a positive constant

times

E(|wo,s, (M;5, ) (1 Xs] + [Vil)|1&(Ms,) —
+ E(|wo,s, (M, )|&(Mij,)||&( an) |
+ E(|wo,s, (M;,,)|&(D1, (0:)]|&(M;,) — g(ﬁJn(ez‘))D

It can be shown that each of these three terms can be bounded by an o(1) sequence using
essentially the same argument. First, by conditions (a) and (b) of Assumption ??, g is con-
tinuously differentiable so |g(M,;, ) — (b, (6:))| < |Dg(py)||n:| for some p! between p;, (6;)
and M;y,. Next, by Assumption ??(e), |Dg(m)| < D(p;'(m)) where D(-) is nonincreasing

on the interval (—o0,qs,(6;)] and nondecreasing on [q;_s,(6;),00). If wo s, (M;z,) > 0 and



0; € Oy, then p; € Ms,. If wy 4, (M;y,) > 0 and 6; ¢ O, then D(p;'(p;)) < D(6;). Then

E(|wo.r,, (Mg, )(1X] + [Yi)I&(Mis,) — &(p..(0:))])

95, (0:)
< / BDWE(X:| + Y] | 0: = ) fo () Bl | 65 = t)dt

— 00

+ / B( sup \Dg<m>|) E(Xi|+ Yl | 6: = )E(Ini| | 0, = t) fo(t)dt

meMs,

4 / o BDWEX+ Y11 0:= 0B (n | 6.= (0
q1—5, (0

B

ST
n

{E (D(0:)(1X:] +1Yi]) + < sup IDé(m)l> E(|Xi| + |Yz’|)} = o(1)

m€M52

where the second inequality follows since sup,cg E(|n] | 0; = t) < (sup,ep E(n? | 6; = t))l/ ’<

Jn ' and the final equality follows because SUPem,, [P8(m)| = O(1) by Theorem C.1 and

E (D(6;)(1X;] + Vi) and E(|X;] +Y;]) are both bounded by (c) and (e) of Assumption ??.
The second term in equation (B.4) is bounded by

BE(1(6; € 05,)|mil|(& — 48P, (0:)))(Xi — §2(Ps,(6:)))])
< D3 B(100: € 05)|(E ~ V(P OD)(X; - 20, (6)])
B
< —5  sup E((&(5) —v(81)'8(m)(Xi — Gu(m))]) = o(1),
Jn' " BiEBmEMS,
where convergence follows by Assumption ?7(c) and Theorem C.1.

Next, the second term in equation (B.2) can be bounded as follows.

|M(31Jn, g, w) - M(Bun, g7wo,Jn)|
< B(|w(Mig,) — wo,z, (Mig)|[(& — A'&(Mig) (X — Go(M;,))])

2
<C(1+( sup [g(m) sup  |w(m) — wo,z,(m)] = 0p(1)
meMUMs, meMUMs,

where the second inequality follows for some constant C' > 0 by conditions (a) and (c) of
Assumption 7?7 and the final equality follows by using Theorem C.1 and Assumption ?7?(d)
as above since dy > 0; implies that M, C My, and hence P?"(M UM, C Ms,) = Pr(M C
./Vl(sl) — 0.

Next, |M,(1s,, &, @) — M(Byy,, &, 0)] = 0,(1) by applying Theorem B.2. Let T, =



B x {(w,g) : w(m) = 0Vm ¢ Ms,,sup,,c v, [8(m)] < B,sup,eng; [Dg(m)| < B,

SUD, e lw(m)| < B, supy,c |Dw(m)| < B}. Define the metric d,,((81, g, w'), (1,8, w)) =
|81 = Bil + SuPpe s, 18/ (M) — 8(m)| +8uppe g, [w'(m) —w(m)|. Both I'y; and d, vary with
n because My, varies with J,.

The space I, is uniformly totally bounded because O, is compact and because of the
conditions in Assumption ?7(b) controlling {p; : J > Jy}. Condition (c) in Theorem B.2 is
satisfied under conditions (a) and (c) of Assumption ??. Condition (b) in the theorem follows
from Theorem B.1 since the random variable |w(M;;, ) (&(581)—7(81)'g(M; ;) (Xi—g.(M;s,))]
is bounded by a random variable that has finite absolute mean when (f;,g,w) € I',, by
condition (¢) of Assumption ??. Lastly, Pr((fis,,& w) € T)) < Pr(supmeMé1 lg(m)| <
B) + Pr(subpens, IDEmM)| < B) + Prsup,gp, i(m)] = 0,[i(m)| < B,|Di(m)| < B)
and each of the first two terms converges to 1 by Theorem C.1 and the third converges to 1
by Assumption ?7?(d).

Thus, I have shown that

|M*(31Jn,h077'0,Jn)\ < op(1) + ‘Mn(BlJnungH
BUt |M (BlJnagv )| _lnf51€B|M (ﬁlag7 )| and

IIlf |M (617g7 )‘ < lnf {‘M B17g7 ) *(ﬁlvh(]?TO,Jn) _'_M*(Bl?hOaTO,Jn)}

1nf ‘M 1, g, W) — M* (ﬂl,ho,To,Jn)‘ +ﬂifgg|M*(517h0>To,Jn)|
1

< ‘Mn By, &) — M*<B1Jn>h0a7—0,Jn>‘ +Biféf6|M*(51,ho7To,Jn)|
1
= 0p(1) +[3111éf8\M (81, ho, 70,4,)| = 0p(1),
where the third inequality follows since £, 7, € B, the first equality follows from (B.1), and

the second equality follows because 519 € B and M*(S10, ho, 70.s,) = 0.
Therefore,

M (Br,s bo, To0,0,)| < 0p(1) + [M(Brs,, & 9)| = 0p(1)
[l

Theorem ?? can be proved through a few lemmas. Let Z,(g, w) = n~' 320 w(M;)(X; —
9:(M;))(Zi—g (M) and Z;(h, 7) = 0" 0L, 7(6:)(Xi—ha(6:)(Zi=h(6;))'. Then M, (51, g, w) =



A

Zn(g, w)y(B1) where v(81) = (1, 8,). 1 can also define M*(3,,h,7) = Z*(h,7)v(5;)" and

n

i=1
where A is the K x K + 1 matrix [0x,1 Ix]. Then let Q, == Qn(&, @) and Q*(h,7) :=
Z*(h, ) A
As in the proof of Theorem ?7?, I consider a sequence {J, : n > 1} and then derive the

stated results as n — oco. I first state the following lemmas, which will then be used to prove
Theorem ?77.

Lemma B.1. Under the assumptions of Theorem 77,

() Vi { Zu(g ) = Zu(@ wos,) — B (Zulg ) = Zu(@ wos,)) } =0 and

(b) \/E{Zn(gv wo,z,) = Zn(ho, 70,0,) — E (Zn(ngO,Jn> — Z3(hy, TO,Jn)>} = 0
Lemma B.2. Under the assumptions of Theorem 7?7, \/n(E (Mn(ﬁm, g, 121)) —Byy,) = 0,(1)
and By, = O(J;") where By = E (10,(0;)n7 Dh(0;) Dh.(6)).

Lemma B.3. Under the assumptions of Theorem 77, Qn—QaJn = O,(rn)+0 ((J,,  log(J,))"?)

_ 2 log(n) | log(Jn)?/?
where r, = hi + T T 1) 72

Proof of Theorem 7. First,

\/ﬁ <Mn(6107 gv ’Lb) - BlJn> (B5>
=vn {Mn(ﬁl(b g W) — MZ(ﬂlO? ho, 70,7,) — E <Mn(510; g w) — M;(Bm, hy, To,Jn)>}
+n (E (Mn(BIOa g, sz)) - BlJn> +Vn <MS(510, ho, 70,,) — E(M;(Bo, ho,To,Jn))>
By Lemma B.1, since M, (B0, 8, w) = Zn(g, w)) and M:(f10,h,7) = Z(h,7)~), the first
term is 0,(1). By Lemma B.2 the second term is also o0,(1). Therefore,
Vi (V10 8,%) = By, ) (B.6)
=Vn <MZ(510, ho, 70,1,) — E(M:;(6107 h0>7'0,Jn))> + 0p(1)



1/2

Since condition (b) of Assumption 7?7 implies that sup,, ||V}, "|| < oo,
\/ﬁ‘/l;i/Q(Mn(ﬁloa g w) — Biy,) (B.7)
= VAV (N (B0, B, m0.0,) = EOT; (Bros ho, m,0,))) + 0(1)

—d N(07I)

where the last line follows from the Lindeberg-Feller central limit theorem for triangular
arrays since condition (¢) of Assumption ?? implies the Lyapounov condition and condition
(b) implies that sup,, |[Vy,/*]] < oo where Vi, = E(7os, (6:)2€2(Xi—hou(6:))(Xi—hos(6:))') =
Var(y/nM; (B, ho, 70,1,))-

Next, for any 1, My(B1, 8, 1) = My (Bro, &, @) — Qu(B1 — Bro). Therefore, \/nQy (S, —
Bro) = VM, (Brg, &, W) — /nM, (B4, & w). Rather than assuming that M, (3, , &, ®) = 0,
the following argument shows that /nM, (31,8, 0) = 0,(1).

The result in (B.7) and condition (b) of Assumption ?? together imply that M, (S0, &, @) —
Bij, = O,(n~"/?). Further, since By, = o(1) by Lemma B.2, we have that M, (S0, &, W) =
0p,(1). The, for each 3, define M, (B,&,w) = M, (B0, &, 1) — Q5.5 (81 — Bro).  Let
Bi = Bio + Qi st Mu(Bro, & ) so that M, (By,g,1w) = 0. Then M, (B0, 8,0) = 0,(1), so
condition (b) of Assumption ?? implies that 3, — 19 = QS;ﬁMn(ﬁlo,g,w) —, 0. By
condition (a) of Assumption ??, £ € int(B), so I can assume that 3, € B. Therefore,
condition (a) of Assumption ?? also implies that [ M, (1,8, 0)| = infz,ep | M (B, &, 0)| <
|M,(B1, &, )| 4 0,(n~1/?). So it remains to show that \/nM, (B, &, W) = o0,(1).

But since M, (81,8, ®) = 0, |My (1,8, @)| < [Mn(Br, & @) + [(Qu — @55, (Br — Pro)| =
(@n — Q5..) (Bt — Bro)|- And 0= M,,(B1, 8, @) = My(Bro, &) — Q3. (Br — Buo) so that

(Qn — Q5.5,) (B — Bro) = (Qn — Q5.5.)(B1 — Bro — By,) + (Qn — Q5.7) B,
= (Qn — Qé,Jn>QS:]i(Mn(/BIOa g, %) — Buy,) + (Qn — Qo.7) B,

I have already shown that (M, (b1, &, @) — Biy,) = Op(n~'/2) so the first term here is
0,(n"'/?) by Lemma B.3. Applying both Lemmas B.2 and B.3, the second term is

log(n)  log(J,)P/? _ _
(0, (1 2 L BRI o st ) 00,

which is 0,(n"'/?) by conditions (e) and (g) of Assumption ??. Thus I have shown that

VM, (B, &, 10) = 0,(1) and therefore v/nQ, (11, — Bro) = V/AMu(Bro, & 1) + 0,(1).
Next, since By = QS:,IBU, sup,, ||V1T]T1L/2|| < o0, and, as just shown, (Q, — Q5.7,) B, =



01)(”71/2)»

Vv Qs (Bu, — B — B,)
- \/EVITITIL/QQH(BUTL — P — By,) + \/ﬁVfJi/?(QaJn — Q) (B, — Bo — By,)
- \/ﬁvljfiﬂ <M”(5107 g w)— QnBJn> + \/EVIT]}/?(QS,JH — Q) (Brs, — Pro — By,
= Vi, (WL, (Bro, &, %) — Bu,)
+ (Vi@ — Qi VYY) (VAVES @i, (u = Bro — Bu)) + 0,(1)

Then conditions (b) and (c) of Assumption ?? and Lemma B.3 imply that

( lJi/Q(QO Jn Qn)QS Ji%%?) = 0,(1)
so that

\/_V1J1/2( My (B0, &, W) — Biy,)

\/_‘/1]711/2@0 In (51Jn Pro— Bu,) = 1 —0p(1)

+0,(1) =4 N(0,1)

Since B, = O(J;1) it follows from conditions (b) and (c) of Assumption ?? that 3y, — By =
Op(n™12) + O(J; ).

I£Vig, = Vi and Q5 , — Q5 then v/n(Bus, —Bio-By,) = (Qi, ) ViJ?) vavi, Qs (1,
Bio — By,) —a N(0,Q5'V1Q¢™h). If, in addition, v/nB;, — vB then \/ﬁ(ﬁljn — Bi) =
(B, — B — By,) +vnB;, —a N(vB,V). O

Proof of Lemma B.1. Proof of (a): Let M* = p,(6;s) for some 0 < § < §;. By conditions
(d) and (f) of Assumption ??, Pr(M c M*) — 1
Next, 2, 0) = Ly Zlgs ) where Zlgw) =™t Ly i Xi2L Zlsw) =
WU (Mg, ) X8 (Mo, Zualsw) = 1t Sy (Mg, )ga (Vi) 2L, and Zpu(g, w) =
n! Z@ L w(Mig,)90(Mig, )g(Miy,)'-

Then stochastic equicontinuity results of Andrews (1994) can be applied to each of these
four terms separately. For positive integers r, s let 'y, s be the space of r X s matrix-valued
functions, {f : f(m) = OVm ¢ M*,sup,,c - [£(m)| < B,sup,,c - |Df(m)| < B}. Then let
Ty = {22} x To11 and let py(f*, f) = sup, E (|(f*(Mis,) — f(Miy,))X:Zi2) . Then, by
Theorems 1-3 of Andrews (1994) and condition LIx of Assumption ?? and condition (c) of

Assumption 7?7, for any sequence 9, — 0,

sup a1 (f*) = va (F)I] =5 O
f’f*€F17pl(f*7f)<6n



where v,,1(f) = n=1/? > i f(Miy,) X Z] = \/ﬁZAnl(g7 w).
Similarly, let Ty = {2} xTo g1, and let po(£°, £) = sup,, B (|X;(£*(Mys,) — £(Mis, ) ?) .
Then, by Theorems 1-3 of Andrews (1994) and condition LIx of Assumption ?? and condi-

tion (c¢) of Assumption ?7, for any sequence §,, — 0,

sup |2 (£%) — vna(£))[] =5 0
f7f*EF27p2(f*,f)<(sn

where v,9(F) = n= 230" Xif (M,,) and vns(wg) = v/inZna(g, f)-
Third, let Ts = {z} x Tox1 and let ps(£*,f) = sup, E (|(£*(M;,,) — £(M;,,)) Z{]?)
Then, by Theorems 1-3 of Andrews (1994) and condition LIx of Assumption ?7 and condition

1/2

(c) of Assumption ??, for any sequence 9, — 0,

sup [[on3(£7) — vas(£)]] =5 O
f,f*EFg,p3(f*,f)<(5n

where v,3(F) = n= 232" £(M;s,)Z) and vn3(wg.) = VnZns(g, f).
Lastly, let I'y = To k41 and let py(£*,£) = sup, E (||f*(M;s,) — £(M;4,)|[*)". Then,
by Theorems 1-3 of Andrews (1994) and condition LIx of Assumption ?? and condition (c)

1/2

of Assumption ??, for any sequence 9,, — 0,

sup [[vna () — vna(£)][ = O
f,f*€F4,p4(f*,f)<6n

Where Un4(f) - n_1/2 Z?:l f(Man) and Un4(ngg/) = \/ﬁZA'rA(gu f)
Then (a) follows since Theorem C.2 implies (1) that Pr(w € I'p11), Pr(wg € Lo x+1.1),
Pr(wg, € I'p k1) and Pr(wg,g € I'ok x+1) each converge to 1 and (2) that py (w0, wo s,) =

07 92(127@7 wO,Jng) _>p 07 p3(ng:B7 wO,Jng) _>p 07 and P4(w§zgl7 wO,Jngccg/) _>p 0.
Proof of (b): Let

n

i = 3 0 )X = (V) (2 — &V,
-2 > (i1, ) (X = ha(0))(Z — ho(6))

— B (w(Mig,)(Xs = §o(Mis,))(Z; — §(M;3,)) — w(M;, ) (Xi — hao(0:))(Z; — ho(6;))")



and

ity = = S w0 )(X; o 6))(Z: — hol6))

T w(p, (03))(Xi — hao(0:))(Zi — ho(6;))
— B (w(M;s,)(Xs = hao(0:)(Zi — ho(6:)) — w(p, (0:))(Xi — hao(0:))(Z; — ho(6;))')

Then (b) follows if \/n1m, = 0,(1) and /nis = 0,(1).

First, consider Var(w(M;z, )(Gs(M;y,) —hos(0:))V;) for V; equal to Y;, a component of the
vector X;, or a component of the vector hy(6;) where gs and hg s represent any component
of the vectors g and hy, respectively. By a Taylor expansion, §,(M;;, ) — hos(6;) = Dgs(p})n;

for some pf between py, (6;) and M;;, so
Var(w(Miy,)(9s(Mis,) — hos(0:))Vi) < E(w(Mis,)* Dgs(p})*n; Vi?)

Next, E(w(M;;,)*Dgs(p;)*n?V?) = [ E(w(M,;,)*Dgs(p;)*n?V72 | 0; = 0)fe(0)dd. For
0 € Os,, both p;, (0;) and Mz’Jn are in ./\/152 (unless w(M;;,) = 0) so pi € Ms, and, therefore,

/@ E(w(Msy, ) Dgu(p?Pr2V2 | 6, = 0)fo(6)d6
52

s32<sup |Dgs<m>|) / E(V? | 6; = DEG? | 6 = ) fo(0)d6

meMs,

2
1
s—Bz(sup |Dgs<m>|> JREGIOT
Jn m€M52 @52

where T have used (a) the fact that E(V:*n? | 6;) = E(V? | 6;)E(n? | 6;) for V; equal to Y, a
component of the vector X;, or a component of the vector hy(6;), by Assumption ??, (b) the
fact that sup, E(n? | 6; = 0) < J !, by Lemma C.1, and (c) condition (d) of Assumption ??
which implies that the function w(m) is bounded uniformly by B.

Next, by condition (e) of Assumption ??, |Dg,(m)| < D(p;'(m)) where D(-) is nonin-

10



creasing on the interval (—oo, gs,(6;)] and nondecreasing on [¢;_4,(6;), 00). Then
. B (00,Da G0 VE 0= 0)f0)as
6\0s,

<5 [ DUPE(V?|6i= 0BG | 6= 6)fu(6)d9
O\Os,

- BE(D(0:)*V?)

so Var(w(M;y,)(gs(Miy,) — hos(0;))V;) = O(J; 1) by condition (e) of Assumption ?? and
Theorem C.2, and by Chebyschev’s inequality,

n'/? Z {w(M ) = hos(0))Vi — E(w(M;y, )(56(Miy,) — ho,s(6:))Vi) } = 0

Since y/nm; can be expanded into a sum of (a finite, fixed number of) terms of this form,
the desired result follows.

Next, using the Taylor series approximation w(M;y, ) — w(py, (0:)) = w5, ()i,

Var((w(Miz,) — w(pa, (0))(Xix = hay 0(0:))(Zi — hoa(6:)))
< B*E(n; (Xit — hay 0(0:))" ( —ho.(6:)))

1
< T B((Xik = hayc0(6:))° (Za = hou(6:))°) = O(J, ")
by condition (f) of Assumption ?? and conditions (c) and (d) of Assumption ?? so that by
Chebyschev’s inequality, \/nms = 0,(1).
[l
Proof of Lemma B.2. First, by Assumption ??, E(Y; | X;,0;,M;) = B1,X; + ho(0:), E(X; |
91', MZ) = hxyo(ei), and hy,O(ei) = E(Y; ’ (91) = /Biohx70<91> + hO(Qz), and therefore,

E (Mn(ﬁma ga UD))
= E (0(Mig,)(Xi = §o(Mig,))(B10X: + ho(0:) = Gy (Mig,) = Bio(Xi = §(Miy,))))
e

g
,0(92') - goc(MiJn))(hO(ei) - Q(Mun)) ) Y0

=L (11?1(]\7[1]”)(
=E (w(Man) {(hz,O(ei) — . (M;y,)) + (gx(MZJn) 0z (]\7[1Jn))}
{(no(6) ~ (M) + (€(Mis,) ~ £} ) 20

11



By condition (d) of Assumption ??, I can assume that M C M, since

Pr(vnE (Ma(Buo,&0)) = Bus,| =€)
< Pr(v/aE (M, (B10,8,10)) = Bus,| > &, M C My,) + (1= Pr(M C My,)

= Pr(IVRE (M(B10,8,@)) = Bis,| > &, M C Ms,) + o(1)

Let ml =F (m(MZJn)(hLo(@z) — gx(Man))<h0(ez) — g(Man)>/) Yo- Then, llSiIlg a second

order taylor expansion of g and g,

i = E (M, ) D (s, (6)

)Dg(p.,(0:))n7) Yo + E (@(M;s,) D (D, (0:)) D*&(F)'n}) 7o
+E(’@(Mun)D2§ (p *)Dg(p.1, (0
0:))D

5.(00))17) 7o + B (0 (Miy,) D* 32 (07" ) D*&(07) n;) Yo
&(Ps,(6:)n7) 70 + Op(J;,*?)

where the second equality follows from conditions (d) and (e) of Assumption ?? by applying

the same argument used above in the proof of Lemma B.1. In addition,

E (w(M;s,)Dg, @Jn(@))Dg@Jn(e»))’nz) Yo

= E (wo,, (9.1, (0:)) D (s, (0:)) D& (D1, (6:)) 07 ) Yo
+ B ((wo,5,(Mi,) — wo,z, (D1, (0; )))DQI(PJTL( i) D& (D1, (0:))'17) Yo
+ B ((0(My,) — wo,5,(Mis,)) Dge(ps,(0 )) &P, (9)) 7) Y0
= E (w04, (D1, (0:))DGa(ps, (6:)) DE(p, (6:))07) Y0 + Op(J,*%) + 0p(n~'7?)

by (e) and (f) of Assumption ?? and (d) of Assumption ??. Thus /n(/ — Bi,,) = 0,(1).
Next, let m2 =F (ID(MU")<§$(MU") — Qx(MZJn))(hO(QZ) — g(MZJn))/) Yo- Then U.SiIlg a
first order Taylor approximation of g,

V|| < v/nosup |Ga(m) — Go(m)|E (0(Mis, )| Dg0;)n:]) 1ol

’mEMgl

= VnO, ((J,; log(J,))"?) sup [g.(m) — g.(m)| ||

meMs,
= Op(l)

where the first equality is due to Lemma C.1 and the second because Theorem C.2 and

conditions (e) and (g) of Assumption ?? imply that SUD, ey, |G (m) — g(m)| = Op(ry)
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= 0, ((Jun~"log(J,))"/?) where r,, = h2+ 1\‘}%57”)4— ;35&{%’;% . By essentially the same argument,

Vilis| < v/nO, (4, log(J))!?) sup |ga(m) = gu(m)l170] = 0p(1)

meMs,
and /n|my| < \/ﬁsupmeM&1 92 (m) — G (m)|*|70] = 0,(1) where

g = E (d(Mis,) (hao(65) — G (,)) (8(Mis,) — &(Vi,))) %0
g = B ((Mig,) G0 (Mis,) = 30 (Vi )@ (Vi) — &(Vos,))) Yo

noting that

Vvn o sup |g.(m) — gu(m)|?

meMs,

I
VR
3
.

~
Ny
0]
[wr
o}
=)
8
3
S~—
Nyl
8
—~
=z
S~
[N}

Therefore

Vn (E <Mn(510, g, w)) — BlJn) = V/n(imy — Buy,) + Vg + /ning + /ning
= 0p(1)
[
Proof of Lemma B.3. Let A = [0gx1 Ik] and recall that Qn(g,w) = Zn(g,w)A’ and
Q*(h,7) = Z*(h,7)A’". The desired result follows from the following expansion,
Qu = Qis, = { Z0(&,®) = Zul@ wo,) = B (ZalE ) = Zua(8,wos,)) } A+
{ w(& w0.1,) = Zi(ho, 70,4,) — E <Z (& wo,5,) — Zi(hoaTo,Jn))}A/

N

+ @ (ho, 70,0,) — E (QZ(ho;Ta,Jn)> +E (Qn(gaw) - QZ(he,To,Jn))

The first two terms are o,(n~'/2) by Lemma B.1. The third term is O,(n~'/2) by application
of the Lindeberg-Feller central limit theorem for triangular arrays since condition (b) of

Assumption ?? implies the relevant Lyapounov conditions.

13



Lastly,

~

B (Qug#) = Qu(ho,70.,)) = B (Qulg. ) — Qu(g wo.s,))
+E <Qn(§, wo,7,) — @Z(ho77'o,Jn)>

The first term is O, (h2 + 250 4 log(j")p/z) by Theorem C.2 and conditions (¢) and (d) of

Vnhn pp=1) jp/2
Assumption ??. The second term is O ((J,*log(J,,))"/?) under conditions (d) and (e) of
Assumption ?7, the proof of which is nearly identical to the proof of Lemma B.2. n

B.0.1 Some useful weak laws of large numbers

The following is an extension of Khintchin’s WLLN that can be proved using the same

methods employed to prove the well-known Kolmogorov-Feller WLLN.

Theorem B.1. Suppose that for each n, the random variables Vi, , ..., Vyy, are i.i.d. More-
over, suppose that there exists an i.i.d. sequence of random variables Vi, ..., Viso, ... such
that Pr(|Vin| > [Viso|) = 0 and E|Vio| < 00. Then n™* Y0 (Vi — E(Vi)) =, 0.

Next, I provide a uniform WLLN. Let V;,,, 1 < ¢ < n be a triangular array of random variables
where each V},, takes values in a (measurable) space V,, and for each n > 1 and each v € T,
h(v,7) is a measurable function from V, to R. The following theorem extends Theorem 3(a)
in Andrews (1992) by explicitly allowing for a triangular array and by allowing the parameter
space to vary with n. Each parameter space I, is assigned a metric d,(-,-). Moreover, a
uniform version of the totally bounded assumption in Andrews (1992) is required. The family
of parameter spaces, {I';, : n > 1}, is said to be uniformly totally bounded if for all € > 0
there exists an integer K such that each space I',, can be covered by no more than K balls

of radius €.

Theorem B.2. If (a) {T, : n > 1} is a uniformly totally bounded family of parameter
spaces, (b) for any sequence v, € Ty, 7130 (R(Vin, Y0) — E(h(Vin, ) —p 0, and (c)
|h(Vins V') = h(Vin, V)| < | f1(Vin)| f2(dn (7, 7)) for all ',y € T, almost surely, for a function
f2(d) that converges to 0 as d — 0 and a function fi such that sup, >, n~ ' 3" | E(|fi(Via)]) <

oo then

1 n
SUp |~ > h(Vin, 1) = B(h(Vin, 1)) | = 0
=1

vl

The proof of this follows as a variation in the proofs in Andrews (1992).
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C Uniform convergence of kernel regression estimators

Consistent estimation of f; in the partially linear model in Section ?? requires uniform
convergence of estimators of E(W; | ;) for a random variable W;. In this section, I provide

three such results for the kernel regression estimator

gmy = =2 (]_Vi;l"m>
S K (M)

where M; = J~! Z}i:l Mz‘j. Dependence on J is left implicit in the notation for M; for
convenience. Let pj(0) = E(M; | 6; = 0). The results in this section will be applicable for
the case where J = J and sz = M,; for each j but also cases where M, = (]\;[il, e sz)
is some subset of the full vector of J items, M;. A statement of the main results and the
sufficient conditions are collected in the first subsection and proofs are all in a separate

section below.

C.1 Assumptions and statement of convergence results

Before stating the main uniform convergence results for g, (m) I first state two important

results regarding the convergence of M; to p;(6;) under the following assumption.

Assumption C.1.

(a) The binary random variables, My, ... , M, 5 are mutually independent conditional on 0;

(b) 3Jy such that, for each J > Jy, p;(t) is strictly increasing, continuous and differentiable
at all t € R with derivative Dp;(t) such that for each t € R, the family of functions
{Dpj : J > Jo} is equicontinuous at t. Moreover, for each t € R, inf 7., Dpj(t) > 0.

(c) 6 has absolutely continuous distribution function Fy and density fy that is continuous
and satisfies 0 < fo(t) < fo for all t € © := support(6;).

Lemma C.1. Under Assumption C.1(a), if the sequence of random vectors M = (M, ..., M),

1=1,...,n 1s i.i.d. for each J then
(a) for any e >0, Pr(|M; —p;(6;)| > ) < 2exp(—2Je?)

(b) for any e > 0, Pr(maxj<i<y | M; — pj(0;)] >¢) <2n exp(—2j52)

_ - N\ /2
(¢) for any s >0, supgeg E(|M; —pj(6;)|° | 6; =0) = O ((J_llog J) )

15



The first two conclusions of this lemma are due to Douglas (2001). Theorem A.2 in
Williams (2017) provides a similar result under a more general mixing condition in place of
C.1(a). The proof is short but instructive.

Proof of Lemma C.1. First, (a) follows from Hoeffding’s inequality since

Pr(|M; —p;(6;)] > ¢) = /Pr(|M,- —p3(0:)] > | 6; = 0)fo(0)db
< / 2 exp(—2J¢?) f(0)do

This then implies (b) since

Pr(max |M; — p;(0;)| > €) <Y Pr(|M; — p;(6;)| > )

1<i<n -
=1

< 2nexp(—2Je?)
_ - S\ 1/2
Let n; = M; — p;(0;) and define a sequence p; = <§J*1 log(J)) . Then

sup E(|M; — ps(0:)° | 6; = 0)
< Sl;pE(lmlsl(lmls <p%) [0 =0) + E(In:*L(|m|* > p%) | 0: = 0)
< p5+ Pr(iml” > p5 | 0; = 0)
=p5+Pr(nl > ps | 0: =0)

< pf 427

where the final line follows from an application of Hoeffding’s inequality and (c) then follows

from the definition of pj. O

In addition to Assumption C.1, I will impose additional regularity conditions and as-
sumptions on the rate of convergence of the bandwidth sequence h,, and impose properties
for the kernel function, K to derive asymptotic convergence of g,. The following conditions
are used for the first result.

Assumption C.2.

(b) The function hyo(t) := E(W; | 0; =t) is continuous for all t € R and is differentiable
at all t € R with derivative Dhy,o(t) that is also continuous at all t € R.
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(c) Elel]® < oo and for any d > 0, supyee, E(|e;|* | 6; = 0) < 0o where e; = Wi — hyo(6;).

(d) K is nonnegative and twice differentiable with continuous first and second derivatives
K' and K". All three functions K(u), K'(u), and K"(u) are bounded by K1(|u| < 1),
and K (u) > K1(Ju| < 1/2) for all u € R, for constants 0 < K < K < oc.

By Assumption C.1(b), for each .J, the function p 7 has an inverse which is well-defined
on its range, which is an interval in [0,1]. The inverse ﬁ}l(m) can be extended to [0, 1]
by assigning the values inf © and sup © for values of m below and above this interval,
respectively. Then define g, (m) = hwjo(ﬁt}l(m)).

Also, for a fixed 0 < § < 1/2, let O denote the interval [gs(6;), q1-5(6;)] and define
Ms =ps(05) = {m € [0,1] : m = p;j(f) for some § € Os}. Though it is suppressed in the

notation, My varies with .J.

Theorem C.1. Under Assumptions C.1 and C.2, if J,, is a sequence such that J, = O(n")
and J7' = O(n~") for some r > 0, h, — 0, nh? — oo, and (J; 1og(J,))/?h;* = o(1) then

there exists a constant 0 < B < oo such that

(a) 1m0 SUP,e, |Gw(m)| < B and lim o SUp,,enq, [DGuw(m)| < B

(b) 1My, o0 Pr(SUp e p; M5 17, —mj<h SUPsefo,1] | Dw (tD5, (0:) + (1 — t)m)| > B) = 0 and
limy, 00 Pr(infomea, supiejo 1) DD, (]5}711 (t2h, + (1 —t)m))| > B™') =0

(¢) limy, oo Pr(super |(nhy) >0 K (@)‘ <BH=0

(@) 5 psent, [3ulm) — Gulm)] = Op(ha) + Oylog(n) (k) 2)

(€) Tty o0 Pr(sup,scpg, [Gulm)] < B) = 1

(1) Ty s Pr(supy,cpg, |1DGu(m)] < B) = 1

The convergence rate in conclusion (d) of Theorem C.1 is not sufficient for y/n—convergence
of semiparametric estimators based on § because the convergence rate is not faster than n=1/4
when r < 1/2, which is the case if \/n/.J, — v > 0. This is because if J, = O(n") for r < 1/2
then the restriction (J;!log(J,))"/2h;* = o(1) implies that k' = O(n"/?) = O(n'/*) which
implies that O,(h,) is not 0,(n~'/4). Fortunately, this convergence rate can be improved un-
der the following assumption, which implies the conditions of Assumption C.2 but imposes

several additional smoothness restrictions.

Assumption C.3.
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(b) The function h,o(t) = E(W; | 0; = t) is continuous for all t € R and is twice
differentiable at all t € R with first and second derivatives Dhy,o(t) and D*hy,o(t) that

are both continuous at all t € R.

(¢c) 3Jo such that, for each J > Jy, §j(t) is twice differentiable at all t € R with second
derivative D*p5(t) such that for each t € R, the family of functions {D*p; : J > Jo}

18 equicontinuous at t.

(d) the density function fy is differentiable with derivative D fy(t) that is continuous at all
teR.

(¢) For each s €N, 2 < s < p, the function w,;(t) = J*?E(n; | 0; = t) is differentiable
with derivative Dw, ;(t) such that for eacht € R, the family of functions {w,; : J > Jo}
is equicontinuous at t and the family of functions {Dw,; J > Jo} is equicontinuous
at t.

(f) Elei|? < oo, E|W;|? < oo and for any 6 > 0, supgee, E(|e;|? | 0; = 0) < oo and
SUPgeo, E(|Wil|? | 0; = 0) < oo for some q > 3, where e; = Wi — hy,(0;).

(9) K is nonnegative and p + 1-times differentiable and, for 0 < s < p+ 1, K® (u) is
continuous for all u € R, where K®(u) := LK (u). Also, for each 0 < s < p+1,
IK®)(u)] < K1(ju| < 1) and K(u) > K1(Ju| < 1/2) for all uw € R, for constants

0< K < K < .

Theorem C.2. Under Assumptions C.1 and C.3, if J, is a sequence such that J, = O(n")
and J7' = O(n™") for some r >0, hy, — 0, nh3 — oo, (J;  log(J,))"/?h;* = o(1) then

) _ log(n) | log(J,)"/*
_ 2
i 9 ) = Gulm] =, (h” TVl W)

C.2 Proofs

The proof of Theorems C.1 and C.2 both rely on the following lemma. This result is proved

below using arguments that are standard in the literature (see, e.g., Hansen (2008)).

V) N(1=a) ..
Lemma C.2. Let AV*(m) = (nh,) ' >0 Vinik (M“p‘](a;il ) for an i.i.d random
vector {V;}1_,, nonnegative integer s, and a € {0,1}. If (V;,6;, M,),i=1,...,n is an i.i.d.

random sequence, Assumption C.1 holds and, in addition,

(a) V; AL M, | 6;, E|Vi|? < oo for some q > 2, and for any 6 > 0, Supgee, E(|Vi|? | 0; =
0) < o0.
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(b) |k(u)| < B1(Ju| < 1) and k has a derivative, k' which is continuous and is also bounded

by B.

(¢c) J, is a sequence such that J, = O(n") and J;* = O(n™") for some r > 0, h, — 0,
ho' = O(n®) for some o > 0 such that g(1 — o) > 2, and (J; ' log(J,))/?h ' = o(1).

then

sup [AL%(m) = E(AY*(m)] = O, (1og(rn) o) (77 10x(7)) )

meMs

Moreover, if AY*(m) = (nh,) ' Y1, V; fﬁ]J\ZEQi)<Mi —t)* 1k (7—;”) dt then

~ - s/2
sup [AL*(m) — E(A*(m))| = (1og<n><nhn>“2 (J"108(7)) )
meMs

I now provide the proofs of the three main uniform convergence results. Where it is not
necessary for understanding the notation is simplified by omitting the n subscript on J,, and

the J subscript on p 7.

Proof of Theorem C.1. (a) supmems|guw(m)| < supgee, |ho(f)|, which is bounded since O
is compact and hgy is continuous, by Assumption C.2(a). The function g,(m) =
ho(p~*(m)) is differentiable with Dg,(m) = Dho(ﬁ_l(m))m since Dp > 0
by Assumption C.2(b). Then

N SUPgeo, | Dho(0)]
sup |Dg,(m)| < — —
meMs | (m) infyeo, | Dp(0)|

By Assumption C.2(a), the function hy is continuous and hence bounded on the com-

pact set ©5 and by Assumption C.2(b) infyee, Dp(#) is bounded away from 0 as J — oo.

(b) Let the bound found in the proof of (a) above be B /2. If sup,,e v, MaX;, 17, —m|<h,, SUPre[0,1]
Dg,(tp(6;)+ (1 —t)m) > B then there must be m* € M such that M; —m*| < h,, and
|Dg,(tp(6;) + (1 — t)ym*) — Dg,,(m*)| > B/2. By (a) and (b) of Assumption C.2, this
implies that there is a constant € > 0 such that |m* — p(6;)| > €. The result follows by
Lemma C.1 and Assumption C.2(c) and Assumption C.2(f) since

Pr(sup max |m—p(#;)| > ¢) < Pr(max |M; — p(0;)| > € — hy,) = o(1)
meMg i:|M;—m|<hp 1<i<n

The second part follows from Assumption C.2(b) by a similar argument.
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¢) First, define fi(m) = (nhy,) ' ", K (2=2)  Then
=1 hn

n

|fi(m)| = K(nh,) Zl(%—m!éhn/m

(nha) ™Y 1(1P(6;) = m| < hy/4) — 121 [M; = p(6:)] < hn/4)

v
>

=1
n

> K(nh,)™ Y 1(1p(6;) — m| < hy/4) — o(1)

=1
where the second inequality follows from Assumption C.2(d) and the last line follows
from Lemma C.1 and Assumptions C.2(c) and (f) since Jh2 = Jp2(hn/pn)? — 0.
Then, 1(|p(0;) — m| < h,/4) = 1(p(0;) < m + h,/4) — 1(p(0;) < m — h,/4) so
inf K (nh,)™" Y 1(|p(6;) — m| < hy/4)

meMs —
i

> K(h,)™" inf Pr(|p(6;) —m| < hn/4)

meMs
— 2K (h,)™! s (n_l Z 1(p(6:) < s) — Pr(p(6s) < S))

The second term is O, (h;'n~2) by the DKW inequality (see, e.g., p. 268 of Van der
Vaart, 2000) applied to supg.cg (™'Y 0 1(0; < s*) — Pr(6; < s*))

Finally, for n large enough, either m+h,, /4 € Ms or m—h,, /4 € M, or both, so I will
assume wlog that m + h, /4 € Ms. Then Pr(p(6;) < m + h,/4) = Fp(p~ (m + h,/4))
and Pr(p(6;) < m) = Fy(p~'(m)), so

()™ inf Pr(p(6:) —m) < ho/4)

meM

> K (hn)™! mlenﬂg Pr(p(0;) <m + hy/4) — Pr(p(6;) < m)

= K(h,)™" inf (Fp(p~" (m + ha/4)) = Fp(p~"' (m)))

meMs

Kinfyeo, fo(0)
T SUPenm,; DP(DH(m))

which is bounded away from 0 by Assumptions C.2(b) and (e).

(d) First, W; = hyo(0;) + € = Gu(P(:)) + ei = Guw(m) + Gu(p(0:)) — Gw(m) + e; where
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Assumption C.1(c) implies that E(e; | 8;, M;) = 0. Then

(nhn>_1

S~ gu(m)K (B
Al
()™ (Gu(P(6:)) = Gu(m)) K (Mih; m)

i=1

|Gw(m) — Guw(m)| <

< |fu(m) ™!

where Ms = {tp(6;) + (1 — t)m : m € Ms,t € [0,1],|M; — m| < h,}. The probability
that the first term in braces is nonzero is bounded by Pr(maxi<;<, |M; — p(0;)| > pn)
which is o(n~'/2) by Assumption C.2(c), Assumption C.2(f), and Lemma C.1. Next,
(L+h,'pn) = 1+ 0(1), n7! Z?:l 1(|Mz —m| < hy) =n"! Z?:l 1(M2 <m+hy) —
n~tS"  1(M; > m — h,), and

n n n

nT Y 1M <mothy) <07ty C1(P0;) < mot2h,) + 07> 1M — ;)] > h)

=1 =1 1=1

The second term is op(n_l/ %), again by Lemma C.1, since h, > p,, at least for n

sufficiently large. Therefore,

sup 0~ Y 1(|M; —m| < hy) < sup [Pr(p(6;) < m+ 2hy) = Pr(p(6;) < m — 2h,)|

meMsg i=1 meMs

n

+2 sup |n! Z 1(p(6;) < s) — E(1(p(0;) < )| + 0p(n~/?)

s€[0,1] i—
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Here, the first term is bounded by Shﬁ/(infme/\;l(S infieo1) Dp(p~ (tm+ (1 —t)2h,,)) by
(b) and (e) of Assumption C.2. The second term is o0,(n"1/2) (see proof of (c) above).

Next, since F (eiK (M;l—;m“)) = 0, it remains to show that
|An(m) — E(An(m))] = Op(ry)

where A, (m) = (nhy,) ' >0 K (Mh—;m> and 7, = log(n)(nh,)~'/2. This follows by
applying Lemma C.2 with k = K, V; = ¢;, s =0, and a = 1. Conditions (a)-(c) of the

lemma are implied by Assumption C.2.
This follows from parts (a) and (d) of the lemma, which have already been proved.

First,

wa(m) Dfi(m) fu(m)

Dg,(m) =
W) =5 " (hm)

where fo(m) = (nhy) V32, Wil (2422, Using Wi = Gu(m)+Gu (p(0:)) —Gu (m)+e:

and abbreviating K; = K ;L—m> and K| = K’ (M;'L_ , the same arguments used in

the proof of (d) can be used to show that

(nh2)~ Z e K] (nh2)~ Z e K

Then, since E(e; K;) = E(e; K]) = 0, Lemma C.2 can be applied to conclude that

[ Dgu(m)| < (|f1(m)|)_2{ +O,(

n n

sup |(nh2)~? ZeiKZ- = h; tsup |(nh,) " Z e K| = O,((nh3)~1/?)
m i=1 m i=1
sup |(nh2)~ Z e;K!| = h, tsup|(nh,) Z e; K[| = O,((nh3)~1/?)

Conditions (a)-(c) of the lemma are implied Assumption C.2. This then implies by
part(c) that sup,, |Dg.(m)| = O,(1) + O,((nh)~1/%). The desired result follows since
nh3 — oo.

[l
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Gu(m) = Gulm)| < [fa(m)| ™| (nha) 3 ik (Mi ; m)

where fi(m) = (nh,) "' S0, K (M;L;m> Since Assumption C.3 implies Assumption C.2,
SUP, e, | fi(m)|~' = 0,(1) follows from conclusion (c) of Theorem C.1.

Under condition (f) of Assumption C 3 by a p" order Taylor series expansion, K (u/) —

K(u)=370" %(u su)s ‘|‘f () (t)dt. Therefore,
p—1 n 7 p(e) m
) = i S [$ g (P
s=0 i=1 n
n M; (M o t)pfl t—
+ m)|~ (nh,) ! é; ! K® (_> dt
[f1(m)| ™ (nhn) Zl i .

Since é; = W; — g,,(m), for each 0 < s < p,

< sup (nh,)™"

= {igyre (M) - (e (1))}
+(_sup lauto) (€2)

meMsg

x sup (nh,)"!
meMs

By application of Lemma C.2, first with V; = W, and second with V; = 1, each of the first
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two terms is O, (log(jn)smh;sj{s/z%) In addition, I show below that

35 (e (M472)) | o) ca

Next, since E(e; | M;, 0;) = E(e; | 0;) = 0,

sup (nh,) ™
meMs

n

M; |/ -1
> / W=7 g <—t _m) dt
P(0:) p!hﬁ h

=1

(nhn)_l

& Mi (M — )Pt t—m
< (nh,)"" €i/ (’—K(p) (_) dt
( ) ; { p(6:) phn h
Mi |/ —
-E e@./ MK@) <ﬂ) dt
P(0:) p!hﬁ h
< Mi (M — t)pt t—m
BS™ (6 (3(6.) — G, AL =) gy (t=m
)13 Gulp(0) ) / " .

Another application of Lemma C.2, this time with V; = e;, implies that the first term is
0, (1og(j)p/2h;pj—p/21\ji—(%). Lastly, I will show that

> (p0)) ~ gulm)) [ g (S a

i=1 D(03)

= 0, (log(J)*; T 7%n,)

sup (nhy,) ™
meMsg

Then, since h;-*Jn */* = o(log(J,)*/2h*Jn*'?) and log(J,)*/2h-*Jy*/* = O(1) for any s > 0,

~ ~ - - 1
sup [9u(m) — Gu(m)| = O,(1)0, (1og<Jn>p/2h;<p—”J;p/2 T log(J, 2 g o8
me./\/l5 V nhn
= log(n)
+ E : h—(s—2)j—s/2 +1 jn s/2h—sj—s/2 }
1 - -
—0, (hg + Ogn(_g) + 1og(Jn)p/2h;<p—1>J,;p/2)
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Thus, it remains to prove (C.3) and (C.4). First, £ (eme(S) (M)) =0so

hn
B (e (B8 ) = B ((@utp(0) - gutmie (H9=12))
= 727 [ (o0 - s (00K (PO o pl0))a0

= jn_s/th /(gw(m + uhy) — Guw(m))w,;(m + uhn)K(s) (u) fvgi (m + uh,)db

where w_7(0) = J2E(n; | 6; = 0), & ;(m) = w,;(p~'(m)), and fy,(m) = %@f—% and the
last line follows from the Substltutlon u=(p(0) —m)/h,.
Next, use three Taylor approximations: Gy, (m*)—gw(m) = Dgu(m)(m*—m)+3D?g,,(mg)(m*—
P, w0, (57 (m%)) = w75 (m))+ D5 my) (m* =), and o (m*) = Jo, (m)+D fo, () (m* —
m) where m,, m, and m,. are all between m and m*. Take n sufficiently large so that m and

m* = m + uh, are both contained in M;,,. Then, by the previous equation

jz/? sup E <~ﬂ,’sK(s) (p(9> _m>)‘
meMs h
= h2 sup |Dg,(m)@,;(m) Jo,(m /uK u) du + O(h2)
meMs Dp(p
Therefore,
= s p(0;) —m
hn -1 E ~i i K(s) p( ?
e Z_; (6 sl p
. 1 .
—s/2 3\ —(s—2) 7—s/2
< Ty Ol = 0 (hn I )

- ~ o\ 1/2
To prove (C.3), first observe that I can take |n;| < 4, := (coJ,jl log(Jn)) for each 1,
where 2rcy > 1, by Lemma C.1. Also, take n sufficiently large so that é,, < h,,. Then

sup (nhy,)”
meMs

i=1 P(0:) n

N Ko? .
< | sup |Dgw(m)| | sup n 1([p(6;) — m| < hy)

m€M5/2 i=1

&°
— (hp 1)
The final line follows because, as argued in the proof of Theorem C.1 using the DKW
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inequality (see, e.g., p. 268 of Van der Vaart, 2000) and the fact that Pr(|p(6;) —m| < h,,) =
O(hy),

WS 15600 — | < ha) = O(ha) + Oy(n™7%) = Oy (ha)

Now a proof of Lemma C.2 is provided.

~ ~ s/2
Proof of Lemma C.2. Let r, := log(n)(nh,)~"/? (J,:l log(Jn)) . Define b,, such that b¢ =
nlog(n) and let Vi, = Vi1(|V;| < by) and i = 7:1(|0:] < pn) where p, = (r~1J  log(J,))"/?

for r given by condition (c) of the lemma. Let

A=) = o) 3 v (M2
va " ( (9.)}2—@ _m>
= (nhy)™ Z%l(lw > bu)1li K (Mz = )Ii = m)

Mlaﬁ 92 (1—a) —m
Z%nn mz‘ >pn) ( ( )h

— AT\L/sa,rl(m) —i—Axsa’ﬂ(m)

Then [A**(m) — E(A;**(m))] < |A*(m)| + |A7" (m)] + [E(A;**" (m))| where

- n B Mg— 0. (1—a) __ 3 M Qz (1—a) _
AV (m) = (nha) ™'Y (Vinﬁfnra ( o) m) ~E (%nﬁfnﬂ ( Sl m)))

i=1

First, for any t > 0,

Pr (Sup A" (m)| > try) < Pr(max [V| > by) + Pr(max |n;| > py)

memM 1<i<n

E(()Lél;) — 0, where the last inequality

o log(n)’ and the limit holds by condition (a). And
Pr(maxi<i<, |7:| > pn) = o(n™ ') by Lemma C.1 and condition (c).

Then Pr(maxi<i<, |Vi|] > b,) < nPr(|V;| > b,) <

follows from Markov’s inequality since
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Second, by condition (b)

sup |E(A " (m))] < by, sup B ([Vi[1(|Vi] > ba) " 1(| M7p(0:) "= = m| < b))

meMs meMs

<yt osup E(|ViI1(|Vi] > ba)lmil*1(1p(0;) — m| < 2h,]))  (C.5)

meMs

+ {1 B (VIL(Vi] > bo) sl L(M: = p(6:)] > )}
For n sufficiently large, the first term satisfies

hy' sup E([Vi[L([Vi| > by)mil*1(1p(6:) — m| < 2h]))

meMsg

<hy! (9231» Bl | 6 = e>|> BVl > b)1(p(00) = m] < 2ha))
5/2

N

o 1 s _
< hnlbq—l ( sup |E(|mi]* | 0; = 9)|> E ([Vi|"L(|p(0;) — m| < 2hy))
n 96@5/2

n 06@5/2 96@5/2

1
< h;1b<1_—1 ( sup E(|n;|* | 0 = 9)) ( sup E(|Vi[" | 6 = 9)) Pr(|p(0:) —m| < 2h,)

where the first inequality is by the conditional independence between V; and M; conditional
on ¢; under condition (a), the second is because |V;| > b, implies that |V;] < b471|V;|?, and
the third is valid under condition (a). This term is Op(b;(q‘”J;S/Q) since Pr(|p(6;) —m| <
2h,) < Pr (|9i — 5 (m)| < 2h,/ infyeo, Dﬁ(&)) < 4supgee fo(0)hn/ infoco, , DP(B) and
because o2

SUDgeo, E(lnl* |1 6;=0)=0 ((jnl log jn> > by Lemma C.1. Lastly, it is easy to verify

o - -\ 8/2
that ¢ > 2 implies that O, (bn (e=1) (Jfl log J> ) = 0,(ry,) because bi~1 > nla=b/a > pl/2,

For any ¢ > 0, the second term in (C.5), for sufficiently large n, satisfies

ho'E ([VAIL(Vi| > ba) L1 M; — p(6;)] > hal))

< b E (VAL ([Vi| > o) ns*1(| My — p(65)] > tpal))
< h ' E (Vi)' Pr(|M; — p(6;
< 20 E (Vi) '? exp(=Jot202

)| > toa])!?
)
where the first inequality follows from condition (c¢) in the statement of the lemma, the

second follows from the Cauchy-Schwarz inequality and the fact that |n;| < 1, the third

follows from Hoeffding’s inequality. This term is o,(r,,) if t* > 4L because F (|Vj[?) < oo
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by condition (a), and condition (d) of Assumption C.1 and condition (c) imply that h 1'r 1 =
O(nz(+e+57) Jog(n)™1) for some a > 0 and exp(—2J,t2p2) < J7% ' = o(n~"").

By Lemma C.1, condition (d) of Assumption C.1 and condition (c), and applying the
same argument based on Hoeffding’s inequality,

sup [E(A, " (m))| < by, sup. E ([Vialni (| > pu) L1M7 p(0:) " = m| < ha]))

meMs meM

< hﬁlanT(|77i| > pn) = 0(rn)

. . _ V25(0:)( 7a)_m . . .
Third, since |V, 75, K (%) | < b,p: B, I can apply Bernstein’s inequality:

_ tronhy,)?
Pr(AY(m)| > tr,) < exp | __lirunh)
2nVar (V;nﬁ;‘nK (— 2 "”)) + 4t Bb,p3ranhs,

t*log(n)
< exp (_ c1 + cothy, log(n)(nhn)1/2) (C.6)

where the second inequality follows for some positive constants ¢y, co because

(r,nh,)? = O (log(n)nhn (jn_l log(jn)>s> and

_ (I—a) _
Var (Vmﬁan (MZ Pt )h m))

< E (Vi 1([p(0:) — m| < 2h,)) + E (Vi iin L(IM; — p(6:)] = ha,))

7

€0, /5
=0 ((jn’l log(jn))S hn>

where the last line follows because, using the same argument based on Hoeffding’s inequality
b2Pr (|M; — p(6;)| = hy) = o(n™©) for any C>0.
Next, partition M into

< p¥ ( sup E(V7 | 6; = 9)) Pr(|p(6;) —m| < 2h,) + b2 Pr (|M; — p(6;)| > hy,)

hy centered at {m;},. Since

e (2o g (s “ﬂ!SW@WMMH<o< )~ m < 2h,). for n su-
ficiently large, following an argument due to Hansen (2008),

Pr( sup |A,‘fsa(m)] > 3tr,) < NPr(]AX‘”(m)\ > tr,) + NPr(]AZV”(mﬂ > try,)

meMsg
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provided that E|A*V*%(m)| is bounded, where

n

A7V (m) = (nhn) ™Y (Vi LMP(6:) ) = m] < h,)

=1

—E (Vi 1(|M7p(0;)" = — m| < hy,)))

The same arguments used above can be repeated to show that E|A*V*?(m)]| is bounded uni-
formly over m € M; and that the bound on Pr(|AY**(m)| > tr,) derived in equation (C.6)
applies to NPr(|JAxVs¢(m)| > tr,) as well. Therefore,for ¢ large enough

(_ t?log(n)

P AxVse > 3tr,) < 2N -0
r( sup A, (m) ™) P c1 + coth, log(n)(nhn)—l/2)

meMs

where convergence follows because n? ' (nh,) ™2 = O(n~27a~2)), which implies that
by log(n)(nh,) 1% = o(1) if L — % — 5 > 0. The latter follows from the restriction in condition
(c) that ¢(1 —a) > 2.

The result for AY*(m) follows by essentially the same argument. Let

n M; -
Axs,r(m) - Axs(m) — (nhn)_l valwﬂ < p")/ (M; — t)s_lli (t m) .
=1 2(6:) hn
= (nh,)™" Zvil(“/i‘ > b”)/
i=1 p(:)

(M, — t)* 'k (t — m) dt
hy,
no - ‘_
) SVl > ) [ (=0 ()
i=1 p "
— A)l/s’ﬂ(m) —|—AXS’T2(WL)

M;

M;

(65)

Then [A}*(m) — E(A*(m))] < [A)=(m)] + A7 (m)] + [E(A>" (m))| where

AY(m) = ()Y (vmmmr <o [ -t () a

i=1 p

(0;)
_ M; ‘-
5 (Vulnl < ) [ <Mi—t>slm( m)dt
P(0;) hn

First, for any t > 0,

Pr( sup |AYS"(m)| > tr,) < Pr(max |V;| > b,) + Pr(max |n;]| > pn) — 0
meMs 1<i<n i<i<n
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Second, by condition (b),

M; i
/ (M; — t)* ' (t m) dt
5(0,) hn

which implies that

M;
< ’771’813/ 1(|t —m| < hy,)dt
D(0;)

sup [E(A, " (m))] < byt sup B (|ViL([Vi] > ba) il *1(15(6:) — m| < 2hy]))

meMsg meMs

+ B ([VAL(Vi] > bo) il LI M; — p(6:)] > hal))
Both terms are o(r,,), as argued above. And by Lemma C.1 and conditions (b) and (c)

sup |E(AY* 4 2(m))| < h b, Pr(|n:| > pn) = o(ry,
|E(A, " mil > p

meMsg

Third,

Votllnd < o) [ = o0 ()] <

P(0:)

and

— Mi t—m
Var | Vi, 1(|ni| < pn)/ (M; —t)* & ( ) dt
p(6) e

< B (Vi B*1(|p(0:) — m| < 2hn)) + E (Vi B*1(|M; = p(0:)| > )

({7 st 1) |

so Bernstein’s inequality can be applied as above to obtain

- t?log(n)
Pr(|AYs try) < —
r(l8n"(m)] > tra) < exp ( c1 + cotb, log(n)(nh,,)~1/2

The desired result follows by partitioning M into N < ﬁ intervals of width r,h,, centered
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at {mj}é-v:l, as above, and combining results since, for n large enough that r, < 1,

i _ M; B _ .
(M; —t)* & E=m g — (M; —t)*'x EZmy ) g
h h
P(0:) n p(0:) "
() ()l
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Table B.1. Monte Catlo results for the partially linear regression model

n J model 1,a=1 model 1,a=2 model 1,a=4
OLS IRT PLR OLS IRT PLR OLS IRT PLR
bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.05 0.08 0.05 0.08 0.03 0.09 -0.02 0.10 0.09 0.10 0.06 0.10 -0.13 0.11 0.13 0.10 0.11 0.13
1000 100 0.03 0.08 0.04 0.08 0.02 0.09 -0.06 0.10 0.07 0.09 0.03 0.10 -0.19 0.12 0.09 0.11 0.06 0.13
500 0.01 0.08 0.01 0.08 0.00 0.09 -0.10 0.10 0.03 0.09 0.01 0.10 -0.26 0.12 0.03 0.10 0.01 0.13
50 0.05 0.06 0.05 0.06 0.03 0.06 -0.02 0.07 0.09 0.07 0.06 0.07 -0.13 0.08 0.12 0.07 0.11 0.09
2000 100 0.03 0.05 0.04 0.05 0.02 0.06 -0.06 0.07 0.07 0.07 0.03 0.07 -0.21 0.08 0.10 0.07 0.06 0.09
500 0.02 0.06 0.01 0.06 0.00 0.06 -0.10 0.07 0.02 0.06 0.01 0.07 -0.26 0.08 0.03 0.07 0.01 0.10
model 2, a=1 model 2, a=2 model 2, a=4
OLS IRT PLR OLS IRT PLR OLS IRT PLR
bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.19 0.07 0.07 0.07 0.01 0.08 0.12 0.08 0.02 0.08 0.02 0.09 -0.03 0.09 -0.09 0.08 0.02 0.09
1000 100 0.19 0.07 0.04 0.07 0.00 0.08 0.11 0.08 -0.02 0.08 0.01 0.09 -0.04 0.09 -0.16 0.09 0.01 0.09
500 0.18 0.07 0.02 0.07 0.00 0.08 0.09 0.08 -0.09 0.08 0.00 0.08 -0.08 0.10 -0.25 0.09 0.00 0.09
50 0.19 0.05 0.07 0.05 0.01 0.06 0.11 0.06 0.02 0.06 0.02 0.06 -0.02 0.07 -0.09 0.07 0.03 0.06
2000 100 0.18 0.05 0.05 0.05 0.00 0.06 0.09 0.06 -0.03 0.06 0.01 0.06 -0.06 0.07 -0.16 0.06 0.01 0.06
500 0.18 0.05 0.02 0.05 0.00 0.06 0.09 0.06 -0.08 0.06 0.00 0.06 -0.09 0.07 -0.25 0.07 0.00 0.07
model 3, a=1 model 3, a=2 model 3, a=4
OLS IRT PLR OLS IRT PLR OLS IRT PLR
bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd bias sd
50 0.10 0.08 0.22 0.09 0.09 0.10 0.29 0.11 0.57 0.10 0.22 0.13 0.48 0.13 0.83 0.11 0.49 0.19
1000 100 0.08 0.08 0.22 0.08 0.05 0.09 0.26 0.11 0.59 0.10 0.14 0.14 0.47 0.13 0.84 0.11 0.37 0.20
500 0.06 0.08 0.20 0.09 0.01 0.09 0.21 0.11 0.57 0.10 0.04 0.13 0.41 0.13 0.81 0.11 0.14 0.23
50 0.11 0.06 0.22 0.06 0.09 0.07 0.32 0.08 0.57 0.08 0.23 0.09 0.53 0.09 0.82 0.08 0.52 0.13
2000 100 0.08 0.06 0.23 0.06 0.05 0.07 0.27 0.08 0.58 0.07 0.14 0.09 0.47 0.09 0.84 0.07 0.38 0.14
500 0.06 0.06 0.21 0.06 0.01 0.07 0.21 0.08 0.57 0.07 0.03 0.09 0.44 0.09 0.80 0.08 0.15 0.16

Notes: This table reports results of the Monte Carlo exercise described in Section 3.3. All entries are expressed as a fraction of the true parameter value. This table reports results for the coefficient on the

observed regressor. The IRT scores were obtained using the known values for the item response parameters rather than estimated values.
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