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1 The Approximation of the Return on Consumption Claims

Since regimes of the variances of volatility processes are i.i.d, they do not show up as state vari-
ables. I focus on a simpler model without heteroskedastic volatility innovations to explain the
approximation of the return on consumption claims.

The Euler equation for claims on consumption implies the following restriction,

Et(emt+1+πt+1+rc,t+1) = Et(e
θ log δ− θ

ψ
gc,t+1+θrc,t+1) = 1. (1)

Under the linear approximation of rc,t+1 and the conditional normality of shocks, we can rewrite
equation (1) as,

Et(mt+1 + πt+1 + rc,t+1) +
Vt(mt+1 + πt+1 + rc,t+1)

2
= 0. (2)

The log price consumption ratio can be approximated as

zt = A0 +A11x1,t +A12x2,t +A21σ
2
1,t +A22σ

2
2,t. (3)

Based on this log-linearization, we can obtain the approximate return on consumption claims.
Plugging these approximate variables into equation (1), we can determine coefficients appearing
in the log price-consumption ratio. To check the approximation error from the log-linearization I
compare the first and second moments of the log price consumption ratio that are based on the log-
linearization with the counterparts that are based on a numerical method. The numerical method
solves the Euler equation for consumption claims on fine grids for state variables.1 As shown in
Table 1, moments are not much different across methods. The finding suggests that approximation
errors of the log-linearization are reasonably small.

Once the approximation based on the log-linearization is made, the log stochastic discount
factor (mt+1) is an affine function of (x1,t, x2,t, x1,t+1, x2,t+1, σ

2
1,t, σ

2
2,t). Taking expectations of

(x1,t+1, x2,t+1), we can derive equilibrium yields as affine functions of (x1,t, x2,t, σ
2
1,t, σ

2
2,t) from Euler

equations for bond prices (epn,t = Et(emt+1+pn−1,t+1)). With heteroskedastic volatility innovations,
the expression for A0 changes but other coefficients remain unchanged.

1Bansal and Shalistovich (2010) use the same method to check the accuracy of the log-linearization.
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2 Multiple Block Metropolis Hastings Algorithm

The estimation consists of the following five steps.

• Step 1 Initialize ϑ, {σ2
t }Tt=0, {St}Tt=0. Evaluate the log-likelihood at a subset of prior draws by

simulating stochastic volatilities and regimes from selected parameter draws. Pick up the set
of parameter draws, the related volatilities, and regimes that gives the highest log-likelihood
value.

• Step 2 Conditional on volatilities, draw a ϑ from the following proposal density, which is a
mixture of normal and t density.

ϑnew = ϑold + c[pN (0, I) + (1− p)t(0, I, s)] (4)

The transition mixture allows the occasional jump to a heavy-tailed distribution and is useful
for exploring deeply separated areas of the parameter space with roughly similar posterior den-
sity (Geweke (2005, pp. 142-3)). Accept the new draw with probability min[p(ϑ

new|Y T ,{σ2
t }Tt=0,{St}Tt=0)

p(ϑold|Y T ,{σ2
t }Tt=0,{St}Tt=0)

].
Keep the old draw if the new draw is rejected.

• Step 3 Conditional on parameters, draw a new set of volatilities. Here, I use a cyclic Metropo-
lis algorithm from Jacquier, Polson, and Rossi (1994). The relevant posterior density kernel
in this case is given by

p(σ2
t |σ2

t, Y
T , ϑ, {St}Tt=0) ∝ p(Y T |ϑ, {σ2

j }Tj=0)p(σ2
t+1|σ2

t , ϑ, {St}Tt=0)p(σ2
t |σ2

t−1, ϑ, {St}Tt=0) (5)

I use p(σ2
t |σ2

t−1, σ
2
t+1, ϑ, {St}Tt=0) as a proposal density for σ2

t . Applying the Metropolis algo-
rithm, we can sequentially update σ2

t .

• Step 4 Obtain the smoothed probabilities for {St}Tt=0, given {σ2
t }Tt=0, and generate new draws

for regimes according to these probabilities.

• Step 5 Go to step 2 and repeat this M times. Burn B draws and use the resulting M − B
draws for the posterior inference.

3 Estimation Results with 10-year Bond Yield

I estimated the proposed model with an alternative dataset including the 10-year treasury bond
yield which is available on the Federal Reserve Board’s website
(http://www.federalreserve.gov/releases/h15/data.htm). The estimates of parameters are very sim-
ilar to the results in the paper, as I report in Table 2. Also, the estimates of volatilities are highly
correlated, with the corresponding correlation coefficients being 0.731 for consumption volatility
and 0.955 for inflation volatility. Figure 1 shows the estimates of volatilities from the two datasets.
Posterior distributions of measurement errors for bond yields in Table 3 are very similar across
different datasets, indicating that the model fit is not driven by the lack of longer term bonds.
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Table 1: Approximation Errors of the Log-linearizationi

Mean Standard Deviation

Log-linearized 5.03 0.05
Numerical 5.10 0.04

Notes: Numerical solution is based on discretization of expected consumption growth, expected
inflation, consumption and inflation volatility states.

Table 2: Posterior Distribution

Parameter Posterior: CRSP Dataset Posterior: FRB Dataset
Mean 90% Interval Mean 90% interval

ρ11 0.967 [0.956, 0.977] 0.975 [0.972, 0.978]
ρ12 -0.020 [-0.025, -0.016] -0.020 [-0.022, -0.019]
ρ21 -0.064 [-0.075, -0.050] -0.067 [-0.069, -0.065]
ρ22 0.947 [0.939, 0.956] 0.933 [ 0.930, 0.935]
φ11 0.229 [0.211, 0.252] 0.242 [ 0.231, 0.254]
φ12 -0.015 [-0.034, 0.007] -0.034 [-0.045, -0.024]
φ21 -0.058 [-0.086, -0.031] -0.041 [-0.049, -0.034]
φ22 0.718 [0.667, 0.778] 0.708 [ 0.686, 0.725]
σ1 0.0058 [0.0049, 0.0068] 0.0046 [0.0042, 0.0049]
σ2 0.0029 [0.0026, 0.0034] 0.0027 [0.0026, 0.0029]
ν1 0.977 [0.965, 0.987] 0.962 [0.959, 0.965]
ν2 0.960 [0.952, 0.969] 0.991 [0.988, 0.994]

σw,11 12.09 ×10−6 [9.46, 14.15] ×10−6 14.75 ×10−6 [13.84, 15.93] ×10−6

σw,12 3.48 ×10−6 [3.03, 3.85] ×10−6 3.37 ×10−6 [3.02, 3.78] ×10−6

σw,21 8.30 ×10−6 [7.01, 9.88] ×10−6 9.55 ×10−6 [9.00, 10.02] ×10−6

σw,22 1.56 ×10−6 [1.26, 1.93] ×10−6 0.89 ×10−6 [0.80, 1.01] ×10−6

α 0.0224 [0.0001, 0.0477] 0.0007 [0.0001, 0.0014]
µ1 0.0074 [0.0071, 0.0076] 0.0075 [0.0074, 0.0075]
µ2 0.0091 [0.0088, 0.0093] 0.0094 [0.0092, 0.0095]
δ 0.9982 [0.9974, 0.9991] 0.9987 [0.9985, 0.9988]
ψ 1.053 [1.021, 1.079] 1.040 [1.034, 1.046]
γ 9.518 [8.234, 11.778] 7.731 [7.005, 8.607]

Notes: Posterior distribution is based on 50,000 posterior draws after discarding the initial 10,000 draws.

Table 3: Posterior Means of Measurement Errors under Different Datasets

400σu,1 400σu,4 400σu,8 400σu,12 400σu,16 400σu,20 400σu,40
CRSP Dataset 0.439 0.151 0.093 0.084 0.092 0.098
FRB Dataset 0.432 0.127 0.084 0.080 0.097

Notes: All the estimates are in annualized percentage terms. Posterior means are computed based
on 50,000 posterior draws.
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Figure 1: Estimates of Stochastic Volatility Under Different Datasets
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Estimatse are posterior means of volatilities based on 50,000 posterior draws.
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