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A Bayesian Posterior Inferences

In this Online Appendix, we detail our posterior inferences using various priors
on the orthonormal matrix. Section A.1 derives the posterior density and outlines the
procedure for drawing structural parameters with a uniform prior over orthonormal
matrix. Section A.2 discusses applying our identification approach with a robust prior
as in Giacomini and Kitagawa (2021). Section A.3 extends the method of Arias et al.

(2024) to conduct joint inference with a uniform prior over impulse responses.

A.1 Benchmark Inference with a Uniform Prior on the Orthonormal
Matrix

Following Arias et al. (2021), we assume that the proxy SVAR structural parame-
ters (Ao, A4 ) have a prior distribution 77(Ag, A~ ) proportional to a normal-generalized-
normal density NGN(,, ¢ v,0) (Ao, A+ )

m(Ap, Ay) x NGN(y, 0 v,0) (Ao, Ay )
- |det(A0) ‘V*ﬁ e—O.Svec(Ao)’CDvec(Ao) e—O.S(UeC(A+)—‘I’vec(Ao))’QA(vec(A+)—‘Fvec(Ao))’ (A.1)

J/

-

NV
generalized-normal conditional normal

2

where v is a scalar, ® is an 72 x 7 block diagonal matrix, ¥ is an 71 X 712 block diagonal

matrix, and Q) is an 7i17i x 7i17i block diagonal matrix with 7i = n + k and 7 = pii + 1.
The posterior distribution of (A, A) conditional on narrative sign restrictions and

zero restrictions induced by exogeneity condition and block restrictions is associated
with the prior distribution, 71(Ag, A1), and likelihood function, 7t(y’|Ag, A1), in the

form of:
(Ao, Ayly", N(Ao, Ay, y") > Osx1, B(A0, Ar) = Okt 1, ¥(Ao, At) = Ogu(ps1)x1)
o7t (y"|Ag, Ay, N(Ao, Ay, y") > 05x1, B(Ao, Ay) = Ok(n—k)xlr“(AorAJr) = 0kn(p+1)><1)7T(A0,A+)
xrt(yl|Ag, Ay, N(Ag, Ay, y") > 0s1)
7(Ao, A+|B(Ao, At) = Oty x1, (A0, At) = Ogu(pi1)x1) (A.2)
oIl {N(Ao,z‘h,yT) > Osx1 [(O(AO,IZ\HT1
w(y"| Ao, As) (Ao, As|B(Ao, At) = O(niyx1,&( Ao, At ) = Opu(pit) 1), (A.3)



where I{.} is an indicator function, which takes the value of one if narrative sign re-
strictions are satisfied and zero otherwise. The term @(Ap, A ) signifies the ex-ante
probability that narrative sign restrictions are satisfied. Equation (A.2) holds because
zero restrictions do not truncate the likelihood function. However, narrative sign re-
strictions hinge on data observations and thus may truncate likelihood. In particular,
the truncated likelihood can be written as a reweighting of the likelihood function as in
equation (A.3), with weights inversely proportional to cD(AO, fL_). Following Arias et al.
(2021), we assume that the likelihood function, 7r(y”|Ag, A ), is Gaussian so that

n(y"| Ay, Ay ) (Ao, Av|B(Ao, Ay) = Ouoiyx1, #(Ao, At) = Ogu(pinyx1)

B NGN(ﬁ,é,‘T,Q)(AOI A+), if ;B(AO/ AJr) = Ok(n—k)xlra(AOI AJr) = Okn(p—l—l)xlr'
=0, otherwise;
(A.4)

where 7 =T+v, Q= (i XX+Q ) L¥=0LexXY+Q V), d=LxYY+
O+YO Y-V, Y=y - gr),andX=[x% --- %]

In practice, we do not make draws directly from the target density specified by
equation (11) as the number of zero restrictions is large. Instead, we draw posteriors
from a proposal distribution conditional on zero and narrative sign restrictions and then
embed it in an importance sampling algorithm. Following Arias et al. (2021), we first
draw the orthogonal triangular-block parameters defined by (Ao, A, diag(Q1, Q2)) and
then map the parameters into proxy SVAR structural parameters, (A, A ), by

(Ao, A, diag(Q1,Q2)) N (g\odiag(Ql, Qz),{\eriag(Ql, Qz)/)r (A.5)
Ay A

where Ag is an i x i matrix, A is an 71 x i matrix, Q; is an n x n orthonormal matrix,
and Q; is a k x k orthonormal matrix. To guarantee that block restrictions are satis-
tied, we implement the procedure of Waggoner and Zha (2003) to generate independent
draws of the parameters (A, A ) from a restricted NGN posterior distribution charac-
terized by N GN(ﬁIqA,,,;,/Q)(f\O,AJF), where (7, d, ‘T’,Q) is designated to (7, ®,¥,0), and
the matrix A is restricted to be upper-triangular with positive diagonal elements. The
matrix A, = [ A} --- A;, d' | embraces a vector d and matrices A} with the lower



left-hand k x n block being zero. For the orthogonal matrix diag(Ql, Q2), we execute
the Arias et al. (2018) approach to produce independent draws conditional on the zero
restrictions induced by “exogeneity condition” specified by equation (7). In line with
Arias et al. (2021), we make independent draws of (Ap, A;) from a proposal density
conditional on zero restrictions induced by exogeneity condition and block restrictions
by combining the routes of Waggoner and Zha (2003) and Arias et al. (2018) as detailed
in Algorithm A.1.

Algorithm A.1 1. Produce independent draws of the parameters (Ao, A.) from the re-
stricted N GI~\I (0,6,2,0) (Ao, A) using the metho~d of Waggoner and Zha (2~003). Ianartic_
ular, denote Ao j and A ; as the j-th columns of Ag and A, respectively. Ag;and A, ; are
of the form

Aoj=Uproj and Ayj=Vivy). (A.6)

Uj is the first j column of In. V; is block diagonal with the first p blocks as the first n
columns of I and the last block commensurate with scalar one for 1 < j < n and Ly
forn+1 < j < 7. 7y, is random and drawn from a generalized-normal distribution
with parameters U and Sj_l. Y+, is drawn conditional on vy ; from a normal distribution
with mean Pyyo,; and variance H;, where H; = (Vj’ﬂj_le)_l, P = Hﬂ/'].’f)]._l‘i’]-uj, and
5]' = (UJ’CT>]LI] + u]/‘ij;();hij]u] — P]'/ijlpj)_l

2. Fori=12and1 < j<d;draw a;; € R%~"j independently from a standard normal
distribution and set w;; = w;;/ || «;; ||, where dy = n, dy =k, ny; = k+j—1 for
1 gjgn—k,nllj:]’—lforn—k—i—l gjgn,andnzlj:j—l.

3. Fori=1,2recursively define Q; = [ qi1 --- qiq, | by qij = Kijw;;for any d; x (d; —
n; ;) matrix K; ; whose columns form an orthonormal basis for the null space of the n; ; X d;
matrix

Mij=1[Gij(Ao,Ay) qix -+ gij1 ],
where Gij(Ao,Ay) is Gj(Aog,Ay) if i = 1 and is an empty matrix if i = 2, and
G; (AO,A+) ([\6 ) L’zfl <j<n—kandisan empty matrixifn —k+1 <j <n.

4. Map the resulting draws of (Ao, A, diag(Q1,Q2)) to the proxy SVAR structural param-
eters (Ao, Ay) using f in (A.5).



Arias et al. (2021) demonstrate that the proposal density of (Ag, A~ ) is

Dg(Ao, A4)'D(Ao, AL)Nz, 4.0 1"%,
(A7)
where DZ(Ap, A;) denotes the derivative of ¢ evaluated at (Ag, A.), N( Ao,Ay) is a

matrix whose columns form an orthonormal basis for the null space of DB(Ag, A-),

p(Ao, Ay) « NGNy 49 6 (Ao, Ay )| det(N ;4 4

& = (fog)~!is a composite function of f and g with function ¢ defined as (Ao, A1, w) LN
(/~\0,1~\+,diag(Q1, Q2)), and w = (w11, -, Wiy, Wa1,- - ,Wak). To draw structural pa-
rameters from the target density, we need an additional importance sampling step with

importance weights defined as the ratio between the target density and proposal density:

Ti:

(A.8)

A.2 Inference under Robust Prior

Our benchmark analysis uses a uniform prior over the orthonormal matrix, reflect-
ing a belief in equal density across observationally equivalent models when parame-
terized in their orthogonal reduced form. However, as pointed out by Baumeister and
Hamilton (2015) and Giacomini and Kitagawa (2021), this uniform prior can inadver-
tently be informative about the marginal distribution of impulse responses. To address
this, Giacomini and Kitagawa (2021) propose a robust prior framework that avoids spec-
ifying a particular distribution for the orthonormal matrix. This approach has been
applied to proxy SVAR and narrative sign methods by Giacomini et al. (2022b) and Gia-
comini et al. (2023), respectively. In this section, we propose an algorithm that integrates
the proxy SVAR approach from Giacomini et al. (2022b) with the narrative sign method

of Giacomini et al. (2023) within a unified robust prior framework.

Unlike our benchmark framework, our posterior inference here is based on a con-
ditional prior for the orthonormal matrix and unconditional likelihood following Gia-
comini et al. (2023), rather than an unconditional prior for the orthonormal matrix and
conditional likelihood. This is because the robust prior approach requires an optimiza-
tion step to solve for the upper and lower bounds concerning the orthonormal matrix.
When historical decomposition restrictions are imposed, the unconditional prior can be
revised by data, which is undesirable for the optimization step. To avoid this issue, we

base our inference on a conditional prior, which, as shown below, is not revisable by



data.
We begin with the prior for (Ag, A, diag(Q1, Q2)):

(Ao, Ay, diag(Q1, Q2)) = (Ao, Ay )m(diag(Qr, Q2)| Ao, Ag). (A.9)

Following Giacomini et al. (2023), the posterior of (Ao, A, diag(Q1, Q>)) under nar-
rative sign restrictions and the zero restrictions induced by block restrictions and exo-
geneity conditions, is given by

77:([\0/ A—i—/ diag(le QZ)WT, N(AOI A+;VT) > OS><1/ ‘B(Ao, A+) = Ok(n_k)xl,l)é(A(), A-l—) = 0k11(p—|—1)><1)
( & 7-[(]\0/ A+/ diag(er QZ)‘]/T/ N(AO/ A+/yT) > OSXl)/ lf ﬁ(AOI A+) - Ok(n—k)xlr
a(Ag, At) = 0kn(p+1)><1/'
=0, otherwise,
« 7t(yT, N(Ag, A1, y") > 0sx1|Ao, As, diag(Q1, Q2)) (Ao, At, diag(Q1, Q2)),
it B(Ao At) = Ogn—ryx1,2(Ao, Av) = Opu(pr1)xvs
=0, otherwise,
1 ﬂ(yT’[\O/ A+)7T(AOI [\—F)T((dlag(Ql/ QZ)‘IN\OI [\—l-)/ if N(AOI A—F/ yT) > Osxll
ﬁ(A0/A+) = Ok(n—k)xlr“(AOI A+) = Okn(p+1)x1;
=0, otherwise,
o 77(Ag, Ay |yT)mt(diag(Q1, Q2)| Ao, A
0

’ if N(AOIAJr/yT) > OSXl/
(A

+)/
/A+) = Ok(n—k)xlllx(AO/ A-l—) = Okn(p—l—l)xl;

=

=0, otherwise,
(A.10)

where (Ag, A}) = f(Ag, Ay, diag(Q1,Q2)), with f as the mapping from the reduced-
form parameters to the structural parameters. This formula shows that the prior of
the reduced-form parameters (Ao, A) can be revised by sample data, while the prior
of the rotation matrix diag(Qi, Q2) cannot. Rather than specifying a single prior for
(diag(Q1,Q2)|Ag, A ), the robust Bayesian approach considers a set of all such priors,
denoted as TT(diag(Q1, Q2)|Ao, Ay). Using I(diag(Q1, Q2)|Ag, A+), we obtain a class
of priors for (Ag, A, diag(Q1,Q2)):



IT1(Ag, Ay, diag(Q1, Q2)) = {7(Ao, Ay, diag(Q1, Q2)) = (Ao, Ay)m(diag(Q1, Q2)| Ao, As) :
7(diag(Q1, Q2)|Ao, Ay ) € I1(diag(Q1, Q2)[Ao, Ay )}

Combining IT(Ag, A, diag(Q1, Q2)) with the unconditional likelihood and all iden-
tification restrictions, we generate a class of posteriors for (Ag, A, diag(Qq, Q2)) as fol-

lows:

IT1(Ag, Ay, diag(Q1,Q2)ly", N(Ao, A1, y") > 051, B(A0, At) = Og(n—i) 1, ¥(Ao, At) = Ogu(ps1)x1)
= {H(AO/A+,diag(Q1,Qz)\yT/N(AOrA+ryT) > 0551, (Ao, At) = Oy x1, &( A0, At) = Ogu(ps1)x1)

X 7T(/~\0,/~\+|]/T)7T(diag(Q1/ QZ)’ ~O/A+)/ if N(AO/AJr/yT) > Osxll
Ao, Ay) = Ok(n—iyx1, (Ao, A+) = Op(ps1) s

=

=0, otherwise,

: r(diag(Q1, Q2)|Ao, At ) € TT(diag(Q1, Q2)| Ao, As) }

Without loss of generality, we assume the object of interest is the impulse response
of the i-th variable to the j-th shock at horizon h, denoted as #;;,. Since 7, can
be calculated from (Ao, A, diag(Q1,Q>)), this impulse response can be expressed as
niin (Ao, Ay, diag(Q1, Q2)).

The class of posteriors for (Ag, A, diag(Q1,Q2)) induces a class of posteriors for
qij,h(Ao,A+,diag(Q1,QZ)). Giacomini and Kitagawa (2021) suggest summarizing this
class of posteriors by reporting the “set of posterior means”:

[ [ 1Ro, AR, A | yT)d(Ro As), [ u(Ro, As)m(Ro,As |yT)d(Ro As) |, (A1)

where [(Ag, Ay) =

iNfdiag(0,,0,) 1 (Ao, Ay, diag(Q1, Q2)) : 7(diag(Q1, Q2)[Ao, A+) € TT(diag(Q1, Q2)[Ao, As) }
and u(Ag,Ay) =

SUP diag(Qy,0) 1Tijh (Ao, A, diag(Q1, Q2)) : m(diag(Q1, Q2)|Ao, Ay € TI(diag(Qr, Q2)[Ao, As) }-

Giacomini and Kitagawa (2021) also suggest reporting a robust credible region with
credibility level « (see Proposition 1 of Giacomini and Kitagawa (2021)). This robust



credible region represents the shortest interval estimate for 7;;, (Ao, Ay, diag(Q1, Q2))
such that the posterior probability assigned to the interval is at least . In the following,
we provide numerical algorithms to conduct robust Bayesian inference for proxy SVARs
under narrative restrictions, approximating the set of posterior means and the associated
robust credible interval.

Algorithm A.2 1. Draw independent parameters (Ao, A) using Step 1 in Algorithm A.1.

2. Draw parameters (Q1, Qo) with Steps 2-3 in Algorithm A.1. Map (Ao, A+, diag(Q1, Q2))
to the proxy SVAR structural parameters (Ag, A+ ) using (Ao, A+) = f(No, As,diag(Q1, Q7))
L If N(Ag, At yT) > Osy is satisfied, retain (Q1, Qo) and proceed; Otherwise, generate
new draws of (Q1, Q2) (up to a maximum of L times) until the narrative sign restrictions
are satisfied. If no draws of (Q1, Q2) satisfy the restrictions after L attempts, return to Step
1 and draw new sets of reduced-form parameters.

3. Repeat Step 2 until K draws of (Q1, Q) are obtained. Let {(ng), ng)),k =1---,K}
be the K draws of (Q1, Qo) that satisfy N(Ag, A+, y") > 0sx1. Calculate [(Ag,AL) =

miny 73 (Ao, Ay, diag(Q\", QW) and u(Ao, A+) = maxy 1 (Ao, A, diag(QLY, Q1))

4. Repeat Steps 1-3 M times to obtain the lower and upper bounds of impulse responses con-
ditional on reduced-form parameters, [l([\(()m),f\grm)),u(ﬁém),ﬁgrm))] form=1,---,M.
Approximate the set of posterior means using the sample averages of l([\(()m),f\im)) and

Alm) & (m)
u(Ag ", A7),

5. To approximate the smallest robust credible region with credibility « € (0,1), we define
d(n,Ao, Ay) = max{|n — (Ao, AL)|, |7 — u(Ao, Ay)|} and let 2,(n) be the sample
« quantile of {d (17,/1(()"1),[\8:")) ,m = 1,...,M}. The approximated smallest robust
credible interval is then centered at arg miny, 2, (1) with a radius of miny, Z,(77).

Algorithm A.2 approximates the intervals [[(Ag, Ay),u(Ag, A+)] at each draw of
(Ao, A) using Monte Carlo simulation. The constructed lower and upper bounds can
be inaccurate when the draws of (diag(Qi, Q2)) do not span the random space. An
alternative way to obtain the interval is through solving an optimization problem as in
Giacomini and Kitagawa (2021) as follows:

Algorithm A.3 In Algorithm A.2, replace step 3 with the following:

10



3'. At each draw of (Ao, A1) , compute [I(Ag, At), u(Ag, A1)] by solving the following
constrained nonlinear optimization problem:

[(Ag,Ay) = arg dia;(ﬂQi?Qz) niin (Ao, Ay, diag(Q1,Q2)),

s.t. QI1Q1 = Iy, QIZQZ =1I N (f (]\0/ A+/ diag(er QZ))) > 0sx1,

[3d(f (Ao, Ay, diag(Q1, Q2))) = Ok(uryx1, & (f (Ao, Ay, diag(Qr, Q2))) = Opn(pr1)x1s
an

u(Ao, Ay) = arg P2, i (Ao, Ay, diag(Q1,Q2))
1,

under the same set of constraints.

A.3 Joint Inference with a Uniform Prior for Impulse Responses

Arias et al. (2024) introduce a complementary alternative to the robust prior frame-
work for researchers aiming to perform posterior inference without favoring any specific
vector of impulse responses a priori. The authors demonstrate that a uniform prior over
orthogonal matrices is both sufficient and necessary for inference based on a uniform
joint prior distribution over the identified set of impulse responses. Additionally, they

propose a method for conducting inference under traditional sign restrictions.

However, the Arias et al. (2024) framework cannot be directly applied to our ap-
proach due to the zero restrictions imposed by proxy exogeneity assumptions and nar-
rative sign restrictions. In this section, we outline a method to perform joint inference
under these identification restrictions using uniform priors over impulse responses, ne-
cessitating an additional importance sampling step. This method is applicable to any

identification strategy that involves zero, traditional sign, and narrative sign restrictions.

We use the same notations as in our benchmark analysis. Focusing on the posterior
distribution of impulse responses, we consider the impulse response parameterization of
the SVAR model. It is defined as (Lo, - - - , Ly, €), where the element in row i and column
j of the 7i X 71 matrix Ly represents the impulse response of the i-th variable to the j-th
structural shock at horizon hy. The matrices L are functions of the structural parameters

and are defined recursively as follows:
- - /
Lo=(45"), (A12)

11



and
Li=Y (AgA(jl) Lo (A.13)
/=1

for 1 < k < p. The matrices Ay are in turn the inverse functions of the impulse response
parameterization and are recursively defined as

- - !
Ay = <L51> , (A.14)
and
» N A A
A, = (LkLO— ) A-Y (LHL(; ) A, (A.15)
=1
forl1 <k <p.
Let [/, = [ L - L, ¢ } The impulse response parameterization can be rep-

resented as (Lo, L+). The mapping from the structural parameterization to the impulse

response parameterization is denoted by function #, defined as:

.~ W o~
(AO/ A+) — (LOI L+) (A16)
The inverse mapping is given by:
- = hl =~
(Lo, Ly) = (Ao, Ay). (A.17)

Accordingly, the narrative sign restrictions, zero restrictions induced by block restric-
tions, and zero restrictions from the IV exogeneity conditions can be represented as

functions of impulse responses and data observations: N (k™! (Lo, L1),yT) > 05x1,
’B (h_l (io’ i+)) - Ok(”*k)XV and « (h_l (io, i+>) = 0kn(p+1)><1'

We impose a uniform prior distribution for (Lo, L ):
(Lo L) o 1. (A.18)

The posterior distribution of (Lo, L+ ), conditional on narrative sign restrictions and zero
restrictions induced by exogeneity condition and block restrictions is associated with the

12



prior distribution, 71(Lo, L), and likelihood function, 7t (y|h™ (Lo, L)), expressed as:

n (io,myT,N (;fl (Lo, Ly) ,yT> > Os1, B (h* (lO,L)) = Okn_tyx1 & (zrl (Lo, L)) = prmxl)
’ (]/Fl io,i+) 'yT) > OS><1/ﬁ (I/rl ( ) = Ok (n—k)x1,& (h ! (LU L+)) = Okn(p+1)><1) H(EOrI‘Jr)
( ) = O (K7 (Lo, 14) ) = Opupinsa) - (A19)

L)
Ly)

Thus, the posterior distribution of (L, L) is proportional to the conditional likelihood
function. The target density of the posterior of (Ly, L) can be formulated by:

(LO LT N<h (Lo,Ly),y ) >Os><1/,3<h_1 (Lo, i+)> = O(n—tyx1, & (h_l (Lo, L )) :Okn(pﬂ)xl)
{ o [@ (b7 (Lo, L+))] ™ NGNge g 00y (1 (I 0(1 ), i N (W (Lo, L+ ) yT) > Osca,
/5 ht — 1

(Lo, L+)) = Oguryrr (171 (Lo, L)) = Ogugpany s (A.20)

=0, otherwise,

where 7 = T+, O = (@ X'X)™,L ¥ = ([ ®XY), and & = ;Y'Y —
GO,

As in our benchmark case, we cannot draw directly from the target density as the
domain of the target density has been truncated by the imposed restrictions. Instead,
we generate posterior samples from a proposal distribution that is conditioned on the
zero and narrative sign restrictions, which we then incorporate into an importance sam-
pling algorithm. We use Algorithm 1 in the main text to draw reduced-form parameters
(Ao, A+, w), and subsequently map these draws to (Lo, L) as follows:

gofoh I: ~ )

([\0/ [\+/ w) E— ( 0s L+ (A21)

The proposal density for (Lg, L) is given by:
p(Lo,L+) < NGN (g v g« ¢y (Ao, Ay) [ det(N7 ;D" (Lo, L+)'DE* (Lo, L+ )Ny, ; )12,

(LoL+)
(A.22)

where D&* (Lo, L) represents the derivative of ¢* evaluated at (Lo, L+ ), N* (IoL,) isama-
trix whose columns form an orthonormal basis for the null space of D (h 1 (LO, I:+)),
& = (go foh)~!is a composite function. The selection of (7*,®*, ¥*,()*) is critical.
In practice, these parameters can be chosen to maximize the effective sample size of the

importance sampler.

To draw (Lo, L) from the target density, we perform an importance sampling step,

13



with importance weights defined as the ratio between the target density and the proposal

density:

177y L s
oo @ (Lo L)) NON o3y (1 (Lo L))
1 p(Lo,Ly)

The following algorithm can draw posterior samples of the impulse responses. The

(A.23)

key difference from Algorithm 1 in the main text is the variation in the importance

sampling weight.

. Algorithm A4 1. Use Algorithm A.1 to independently draw (Ao, Ay, w). Map the result-
ing draws of (Ao, Ay, w) to (Lo, L+).

2. Check whether N (h™ (Lo, Ly) ,yT) > Osx1 is satisfied.

3. If not, discard the draw. Otherwise, calculate @ (lf1 (Lo, L+)) as follows:
(a) Simulate M independent draws of & from the standard normal distribution.

(b) Approximate @ (h=' (Lo, L)) by the proportion of the M draws that satisfy N (h=* (Lo, L+.) ,yT) >

0s><1-

4. Return to Step 1 until the required number of draws has been obtained.

5. Re-sample (Lo, L) with replacement using the importance weights in equation (A.23).

After generating the samples, we can present the marginal distribution of the im-
pulse responses using pointwise credible sets or conduct joint inference following the
approach of Inoue and Kilian (2022) and Arias et al. (2024). We reiterate the steps as
follows. Let ¢ represent the n'"f-dimensional vector of unknown impulse responses, ob-
tained by appropriately stacking the impulse responses of interest. Let L(9, ) denote a
loss function, where @ is an n'"f x 1 vector. Following Inoue and Kilian (2022), we use

an absolute loss function, defined as:

where d; and 9; are the j-th elements of ¢ and @, respectively. The estimator of the

impulse responses ¢ is given by:
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~ 1 M N
Oy = argmin— Z L (19(1),19) , (A.24)
&EgM i=1

where M is the number of posterior draws, 1/9\M consists of M posterior draws of the
impulse responses 9, and 8\ is the i-th posterior draw.

Following Inoue and Kilian (2022), we define the (1 — «)100% joint credible set based
on the loss function L(9, ) as:

@1,“,L = {l§ ed: Elg(L(ﬂ, 19)) < Clﬂx,L} , (A.25)

where c;_, 1 is the smallest number such that the posterior probability of @1_“, ris1l—a.
In practice, the joint credible set in (A.25) is constructed by sorting % Zf\il L (ﬁ(i), 19(1)> ,

ﬁ Zf-\il L (ﬁ(i), 19(2)), cen % Zf\il L (ﬁ(i), 19(M)> in ascending order and retaining the first
(1 —a)100% draws, starting with the draw with the lowest value.
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B Mathematical Illustration of How Narrative Informa-

tion Aids Identification

This section demonstrates how combining proxy exogeneity with narrative sign re-
strictions can enhance shock identification, utilizing the data-generating processes out-
lined in Section 3 of the main text. We focus mainly on shock-sign restrictions for analyt-
ical tractability, though some insights discussed in this section also apply to other types
of narrative sign restrictions. It is important to note that this section focuses exclusively
on shock identification, and all discussions are conditional on the given reduced-form

parameters.

In Section B.1, we derive the admissible set of rotation angles that satisfy both shock-
sign and IV exogeneity restrictions. Section B.2 investigates the role of proxy exogeneity
restrictions in recovering the true shocks, both when the IVs are valid and when they
are not, and examines how identification performance may be compromised when IV
exogeneity restrictions are violated. Finally, in Section B.3, we evaluate the role of shock-
sign restrictions in sharpening the inferences. We also demonstrate that the sharpness of
shock-sign restrictions differs across periods with varying true shock sizes. The restric-

tions are sharper when being imposed on periods with smaller true shocks.

B.1 General Analysis of the Admissible Set of Rotation Angles

We start by augmenting the SVAR model (Equation 15 in the main text) model with
the IV generating process (Equation 16) as:

Y1 big bip bz 0 O €1t
Yor byy by by 0 0 €2t
Y3t | = | bz bz bz 0 O et | - (B.1)
miy 0 1 6, & 0 U1
| mo | L 0 6 1 0 & | [ v
—— _ N —
bt B &t

The SVAR shock identification is formulated as:
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[ yar | [on 0 0 0 O |[qu g2 i3 0 0 ][ e} ]
Yot o1 02 0 0 O g1 92 923 0 O &5
yar | = | 031 032 o33 0 0 31 q32 4933 0 0 ey | (B.2)
myy 041 00 043 0g4 O 0 0 0 qu 95 (]
| my | | 051 052 053 054 055 | | O 0 0 gs4 gs55 | | 05 |
—_—— - ~ ~ s N —
7 P Q &

where Y is the lower-triangular Cholesky factor (with positive diagonal elements) of
Y. = BB/, Q is an orthonormal matrix, and g} is the SVAR-identified structural shocks.

The ”exogeneity condition” requires both IVs to be uncorrelated with ], as ex-

pressed by:

041911 + 040g21 + 043431 = 0, (B.3)

and
051911 + 052421 + 053931 = 0. (B.4)

In addition, the rotation matrix Q is orthonormal so that:

T+ P51+ 95 = 1. (B.5)

Without loss of generality, we apply the “sign normalization” condition g1; > 0, which
ensures that the impact response of yy; to €1; is positive. We can determine the values
of 411, 421 and g3; conditional on the (estimated) variance-covariance matrix using Equa-
tions (B.3), (B.4), (B.5), and the sign normalization condition. Thus, the IV exogeneity
restriction allows us to point-identify the untargeted shock, €7,, in a model with three
endogenous variables and two proxies. In a general SVAR model with more endogenous
variables, proxy exogeneity restrictions may not exactly identify the untargeted shocks.
However, they would effectively distinguish between targeted and untargeted shocks.
The role of narrative sign restrictions is to differentiate between the targeted shocks.

Given the above discussion, we express the shock identification by rewriting Equa-
tion (B.2) as follows:
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ylt 011 0 0 0 0 q11 6711 (712 00 1 0 0 0 0 EL
Yor o1 0 0 0 O g1 §1 4 0 O 0 g7 97, 0 O €5,
vy | = | o031 03 o33 0 0 g31 §31 4 0 0 0 g5 5% 0 0 €3
Myt 041 042 043 0Oy4 0 0 0 0 10 0 O 0 qaa q45 Z)ikt
| my; | | 051 0520 053 054 055 | [ O 0 O O 1] [0 O O gs4 g55 ] [ 05
h\/_/ ~ ~~ - ~~ ~~ /H/_/
gt Zt}’ M Q Er
[0 012 i3 0 O | [1 0 0 0 0 ][ei]
5’21 (7'22 5’23 0 0 0 qikl qu 0 0 g;t
= | 0; O 03 0 0 0 g5, g% 0 0 & |, (B.6)
0 04 043 Oss 05 0 0 O qu qs5 (2
| 0 052 Os3 054 055 ] [0 O O gs4 gs55 | | 03 |
~ ~"~ - ~"~ h\f_/
M Q &

where the first equation rotates the Cholesky factor, X, with a rotation matrix M, to
impose the proxy exogeneity restrictions. The first column of M is solved by Equations
(B.3), (B.4), and (B.5). The second equation further identifies the targeted shocks, €3, and
e5,, by rotating the second and third columns of the candidate impact matrix, =M, with
an orthonormal matrix, Q. The structure of matrix Q enables us to identify the targeted
shocks using additional restriction without affecting the identification of ¢7,. This clearly
illustrates how exogeneity restrictions aid in identification. Without these restrictions,
we would need to determine the 3 x 3 upper-left submatrix of Q in Equation (B.2). With
the exogeneity restrictions, we only need to pin down the 2 x 2 submatrix of Q, defined

as:
121 422
We apply the “sign normalization” that the diagonal elements of the orthonormal

matrix Q* are non-negative. Then, we can specify Q* as

o = { [ cosf —sinf ] 0c /2, 7r/2]} , (BS)

sinf cos6

where 6 is known as the rotation angle in the literature.

18




To evaluate the implementation of shock-sign restrictions, we express the identified
SVAR shocks as functions of data observations and parameters by rewriting Equation
(B.6) as follows:

& =0 (= 'y (B.9)

Applying the rotation angle in Equation (B.8), we express the “shock-sign restriction”
that €3, is positive for selected periods i € {1,2,..., T} as:

€ = eéQ’(Zf‘f)_lgi = cos 0 (a21y1; + a2Yo;i + a23y3;) + sinb (az1y1; + azys; + azsysi) > 0,

where e¢; is the selection vector, and 4;; is the element in the i-th row and j-th column of
the matrix (ZM)~1. Similarly, we express the “shock-sign restriction” that €3 is positive
for selected periods j € {1,2,..., T} as:

&3 = e5Q'(Z)) 1y = —sin6 (a21y1; + a22y2; + a23y3;) + cos 0 (az1yj + aspyj + assyzj) > 0.

Thus, the admission set of the rotation angles with both shock-sign and proxy exo-

geneity restrictions is expressed as:

6 € {0 : h1jcosb + hy;sinf > 0, —hyjsinf + hyjcos > 0,0 € [-7/2,7/2]}, (B.10)

for selected periods i and j, where hy; = ap1y1; + axyo; + a3ys; and hy; = asjyq; + azyo; +
azzysi.
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B.2 The Role of Proxy Exogeneity Restrictions in Shock Identification

The previous section discussed how proxy exogeneity restrictions may point-identify
the untargeted shock. In this section, we further explore how these restrictions recover
shocks in both cases where the IVs are valid and invalid. In subsection B.2.1, we demon-
strate that proxy exogeneity restrictions not only point-identify the untargeted shocks
but also perfectly recover the true shocks when the IVs are valid. Conversely, in the case
of weak IVs, we illustrate that proxy exogeneity restrictions fail to effectively separate
targeted from untargeted shocks. In subsection B.2.2, we show that when the IVs are not
exogenous, proxy exogeneity restrictions can introduce bias into shock identification,
with the degree of bias increasing to the severity of the violation.

To show the main idea intuitively, we can use a metaphor to compare macro shock
identification to dividing a cake. The task of shock identification is to attribute data
observations to the correct exogenous shocks. If we think of the data as a whole cake,
the proxy exogeneity restrictions are like the first cut, dividing the “cake” between these
contributed by targeted and untargeted shocks. If the first cut is precise, meaning the IVs
are valid, then dividing the rest of the cake with additional restrictions becomes easier
than dividing the whole cake. However, if the first cut is flawed due to a violation of the
exogeneity restrictions, no matter how one makes the second cut (to separate between the
targeted shocks) with additional identification restrictions, she won’t be able to correctly

separate the pieces, as the initial cut was incorrect.

B.2.1 (Strong and Weak) Exogenous IVs

*
it/

We begin by characterizing the relationship between the SVAR-identified shocks, ¢
and the true shocks, ¢;;, by combining Equations (B.1) and (B.9):

& = Q'Y 'Bz,. (B.11)

To simplify the expression, we denote the orthonormal coefficient matrix as D = Q'Y,.' B
so that:

el din dip di3 €1t
Eét = d21 b‘lzz d23 Eot . (B.12)
€3 d31 d3 da3 et

) b

20



where each diagonal element of the orthonormal matrix D, d;;, captures the correlation
between each true shock, ¢;, and its SVAR-identified counterpart, ¢, for i = 1,2,3.

Accordingly, the “exogeneity condition” is represented by:

E(efymyt) = E((d11€1r + d1o€os + dizeze)myy) = E((diogor + dizese)myy) =0,  (B.13)
and

E(efymo;) = E((d11e1; + dioeas + dizess)may) = E((d1ear + dizess)ma) = 0. (B.14)

Given that matrix D is orthonormal, we have

A3 +d3y +di, = 1. (B.15)

In cases of strong IVs, we can solve that dy; = 1, dj = 0 and dy3 = 0 by combin-
ing Equations (B.13), (B.14), (B.15) and the sign normalization condition. As e}, = &1y,
the untargeted shock, €1, is not only point-identified but also perfectly recovered con-
ditional on given reduced-form parameters. Correctly distinguishing between targeted
and untargeted shocks is crucial for accurately identifying the targeted shocks. If the
exogeneity conditions do not effectively separate the two sets of shocks, the targeted
shocks may be misidentified and confounded with the untargeted shocks.

When the relevance assumption of the IVs is violated, we have E(epmq;) = E(e3myy)
0 and E(epsmyt) = E(esrmy) = 0. In this situation, the proxy exogeneity restrictions do
not help identify the untargeted shocks, as Equations (B.13) and (B.14) hold for any
values of di; and dq3. The theoretical macroeconometrics literature typically defines
weak IVs as those for which E(eymy;) = E(egmy;) = 0 and E(egimyp;) = E(ezmy) = 0
asymptotically hold (Giacomini et al. 2022b Arias et al. 2024). Thus, the identification
of untargeted shocks does not hold in the limit. In small samples, the correlations be-
tween IVs and true shocks are close to zero due to large measurement errors, leading to
significant uncertainty in the estimation of dy;, d12, and djs.

In the main text, we also discuss another case of weak IVs, where the two IVs share
the same principal component. In this case, E(epmy;)/ E(earmyy) = E(exmor)/ E(eaimyy),
which makes Equations (B.13) and (B.14) equivalent. Again, the exogeneity restriction

fails to solve a unique set of d1, and dq3 and cannot determine the untargeted shocks.
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B.2.2 Endogenous IVs

This subsection examines the identification performance when the IV exogeneity
assumption is violated. Specifically, we assume that the IVs are correlated not only with
the targeted shocks (e2; and e3;) but also with the untargeted shock (¢1;). We demonstrate
that when the exogeneity assumption is not satisfied, the true shocks cannot be fully
recovered. There exists an upper bound on the correlation between the true targeted
shocks and the corresponding SVAR shocks, which decreases as the IVs become more
correlated with the untargeted shock.

The intuition is as follows: The untargeted shocks remain point-identified even
with the exogeneity assumption violated. However, the true untargeted shocks can-
not be perfectly recovered. The correlation between the true and identified untargeted
shocks decreases as the IVs become more correlated with the untargeted shock. This
occurs because the identified untargeted shock becomes confounded with the targeted
shocks, leading to an incorrect distinction between them. As a result, no matter how
the additional restrictions are imposed, there is an upper bound on the correlation be-
tween the identified and true targeted shocks, as the differentiation between the targeted
and untargeted shocks is fundamentally flawed by the invalid IV. In the following, we
demonstrate the idea by mathematically deriving the expression of the upper bounds.
The process generating the IVs is described as follows:

miy | 1 0 €2y
on B 1 e3¢

Parameters J; and J, control the severity of endogeneity issue conditional on other pa-

o181

+ + (B.16)

G101t ] .

doeqy CoU

rameters, represented by the correlation between the IVs and the untargeted shocks.
Without loss of generality, we assume that é; and J;, are positive, though the analysis in
this section holds even if these parameters are negative. It should be noted that all the
analysis in this subsection assumes the IVs are not strictly weak, meaning 6,6, # 1.

To facilitate analysis, we rewrite Equation (B.17) that describes the relationship be-
tween SVAR-identified and true shocks as:

€1 din dip dis €14
& | = | dn da dos e | (B.17)
€3 d31 dz ds3 €3y

) %
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where each diagonal element of the orthonormal matrix D, d;;, captures the correlation
between each true shock, ¢;;, and its SVAR-identified counterpart, ¢}, fori = 1,2,3. As
in Equations (B.13) and (B.14), the “exogeneity conditions” can be expressed as:

E(ejmy;) = E((d11€1r + dio€or + dizeze)my) =0, (B.18)

and
E(eymar) = E((d11€1s + digear + dizear)mar) = 0. (B.19)

Substituting the expression of the IVs in Equation (B.16), the “exogeneity conditions”

become:

E [(d11€1¢ + d1oeor + dizese) (€21 + 01€3¢ + d1€1¢ + C1014)] = d1101 +d12 +d1361 = 0, (B.20)
and
E [(d11€1¢ + d1o€ar + dizes) (B2€2¢ + €3¢ + On€1r + Cov1p)] = d1102 + d1262 +di3 = 0. (B.21)

Combining (B.20), (B.21), the equation d3, + d2, + d%3 = 1, and the sign normaliza-
tion condition, we can again solve the values of dy1, d1» and dy3:

(616, —1)?

dyg = , B.22
H \/(9192 —1)2 4 (01 — 0201)% + (02 — 0162)? (822

81 — 626, (616, —1)2
_ B.23
=g e \/(9192 —1)24 (81 — 6201)2 + (62 — 616,)%" (B.23)

and

8y — 616, (616, —1)2
di3 = : B.24
B 00,1 \/(9192 —1)2+ (61 — 6261)2 + (67 — 6167)2 (B.24)

This shows that the untargeted shock is still point identified by the proxy exogeneity
restriction. However, since dj, and dj3 are not zero, the SVAR-identified shock, ¢7,, is
confounded with the targeted shocks, e2; and e3;. As a result, Equation (B.22) shows that
the correlation between the true untargeted shock, ¢1;, and its SVAR counterpart, ¢7,, is
lower than 1.
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Now, we shift the focus to the targeted shock, €»; ,and the second row of matrix D.

As D is an orthonormal matrix, we have

and
dy1d + d1pdan + dyzdaz = 0. (B.26)

Combining equations (B.25) and (B.26), we have

(@dzz + @dzg) ’ + d%z + d%:)) =1, (B.27)
d11 di1

where dy1, d1p, and dq3 are solved coefficients expressed in Equations (B.22) to (B.24).
Obviously, we cannot solve two unknown parameters, dy; and dp3, from a single equa-
tion (B.27), and thus the targeted shock, €y ,is only set identified. Although we cannot
determine dp; without additional restrictions, we can obtain an upper bound for this
parameter, which represents the correlation between the SVAR-identified shock, ¢3;, and
the respective true targeted shock, ;. To achieve this goal, we proceed to rewrite Equa-

tion (B.27), grouping the uninterested term d»3 as follows:

2
dis d12d13 2 d2,d?
B ) ldy+ ——dy | +d5y + 2245, — 12713 g2 =1, (B.28)
( ) ( di, +dy 2B B (B +d) P

where we structure the first term to eliminate interaction terms. This enables us to

calculate the upper bound of dy; as:

1— (d%s +1> <d23+ dipdy3 d22>2

7 2 2
dyy dyy +di;

d2 d2 dZ

14+ %2 iy
diy  df (d5,+dl;)

1

T

i dh (d%l +d%3)

2 _
dZZ_

< (B.29)
1+

where the upper bound is attained if and only if dy3 = — d‘ilfﬁ dro.
11 13
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To show how the upper bound can be related to the severity of the endogeneity
problem controlled by the parameters of the IV generating process, we substitute in the
solved coefficients of dq; expressed by Equations (B.22) to (B.24):

B2, <1— (01 = 0261)° (B.30)
2227 (010, — 1)2 4 (01 — 6201)2 + (03 — 616)% '
Similarly, we can solve the upper bound for d33:
1
d%:‘} S 42 4242
1+ % T2 122 - 2
diy  df (df+diy)
_ 2
—1— (%2 — 9162) (B.31)

(9192 — 1)2 + (51 — 5291)2 + (52 — 5192)2.

Equations (B.30) and (B.31) show that the upper bounds for d»; and d33 cannot simulta-
neously reach 1 unless §; = 6, = 0. Thus, when the exogeneity restrictions are violated,
at least one targeted shock cannot be perfectly identified, even with strong and precise

additional identification restrictions.

In the general case, the relationship between the upper bounds and the § parameters
is complicated by the interactions among 61, d7, 01, and 6,. To illustrate how the corre-
lation between SVAR-identified and true shocks changes with the severity of the endo-
geneity problem, we consider a simpler case with symmetric settings where 6; = 6, = 9.
In this case, Equations (B.22), (B.30) and (B.31) simplify to:

_ (60160, —1)2
din = \/(9102 —1)24+ ((1—61)2+ (1—6,)2) 6%’ (B.32)
(1-61)?
(1 - 92)2 (9192 — 1)2(1792)2
dy < \/(1 —61)2+ (1— 92)2\ 1+ (016 — 1)2+ (1 — 61)2 + (1 — 6,)2) 0% (B.33)
(1-65)
(1 - 91)2 (9192 — 1)2(1791)2
d33 < \/(1—91)2+(1—92)2 1+ (6162—1)2+((1—91)2+(1—02)2) 52 (B34)

We observe that dq; and the upper bounds of dj; and ds3 decrease as J increases, since ¢
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appears only in the denominators of these expressions. Notably, the correlation between
the IVs and untargeted shocks positively depends on 4. For instance, the correlation

between mq; and €q; is 61/ \/ 1+ 9% + 5% + (j%. Thus, as the endogeneity problem worsens
— represented by higher correlations between the IVs and the untargeted shocks — the

identification of all three shocks deteriorates, at least in this symmetric case.

In the above analysis, we focus solely on identification uncertainty, assuming the
reduced-form parameters are given and ignoring estimation uncertainty. In the follow-
ing, we conclude this section with a series of Monte Carlo simulations that account for
both types of uncertainty. We examine three different sets of values for ; and &,, cor-
responding to: (1) 6; = J» = 0, suggesting the absence of an endogeneity problem, as
discussed in our main text; (2) 4y = J, = 0.3, indicating a mild endogeneity problem;
and (3) 41 = J, = 0.9, signaling a severe endogeneity problem. We set the values of other
parameters to the same values as the benchmark case. Table B.1 reports the identifica-
tion performance by combining the IV exogeneity restrictions with: (1) four shock-sign
restrictions (5S4); (2) one shock rank restriction (SR1); and (3) zero restriction (ZR). We
also report the identification results with only narrative sign restrictions (NS5S4). The
identification performance deteriorates when the IV exogeneity assumption is violated,
particularly in the presence of a severe endogeneity problem. Nonetheless, the identifi-
cation performance remains satisfactory under a mild endogeneity issue. Additionally,
the IV exogeneity restrictions enhance the identification performance, as evidenced by
comparing the relative statistics between SS4 and NSS,.
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Table B.1: Evaluating the Influence of Endogenous IVs with Monte Carlo Simulations

Panel A: Median correlation for ¢»; Panel B: Median RMSE(b,)
1 2 3 4 5 6 1 2 3 4 5 6
IV generating parameters
¢ 1.60 1.60 1.60 5.00 5.00 5.00 1.60 1.60 1.60 5.00 5.00 5.00
01 0.00 090 090 000 090 090 000 090 090 000 090 0.9
0, 0.00 090 -090 000 090 -090 000 090 -090 000 090 -0.90

Identification performance with §; = d, =0

5S4 093 08 093 080 083 084 044 056 039 065 058 0.65
SRy 093 089 094 087 08 08 043 050 039 056 056 056
ZR 095 052 071 056 047 050 039 140 059 121 139 105
NSS, 077 077 077 077 077 077 072 072 072 072 072 072
Identification performance with §; = é, = 0.3

5S4 090 085 091 081 083 081 045 052 048 058 0.63 0.64
SRy 091 089 094 087 087 086 047 051 041 058 054 056
ZR 091 051 073 052 048 049 037 138 070 129 131 115
NSS, 077 077 077 077 077 077 070 070 070 070 070 070
Identification performance with 6; = d, = 0.9

SS4 070 072 08 071 077 078 064 066 059 075 066 0.62
SRy 075 08 091 080 08 08 058 058 052 061 060 059
ZR 054 054 080 036 046 038 087 116 076 143 134 140
NSS4 077 077 077 077 077 077 073 073 073 073 073 073

Notes: The table reports Monte Carlo simulation results based on 1000 replications. “Median correlation
for e5;” in panel A assesses the correlation between ¢5; and the corresponding shocks identified by differ-
ent SVAR-identification methods. “Median RMSE (b,)” in panel B corresponds to the median of the root

A 2 A
mean square error evaluated by \/ 2}5:1 2}2%0 (b]- - bjz(i)) /1000, where bjz(i) is the impulse response
of ey; on the j-th endogenous variable implied by the i-th accepted draw.
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B.3 The Role of Shock-sign Restrictions in Shock Identification

In this subsection, we assess how effectively our approach recovers the true targeted
shocks by examining the correlation between the true shocks and the SVAR-identified
shocks. We demonstrate how applying sharp shock-sign restrictions can narrow the
admissible set of rotation angles, increasing the correlation between the true targeted
shocks and their SVAR counterparts toward one. Additionally, our analysis reveals that
the sharpness of each shock-sign restriction depends on the periods to which they are
applied. Sharper identification is achieved when restrictions are imposed on periods
with smaller shocks, while the admissible set broadens when applied to periods with

larger shock realizations.

Given that the untargeted shocks have been identified by the proxy exogeneity re-
strictions, we can rewrite the relationship between the SVAR-identified shocks and the

true shocks, as defined in Equation (B.12), as follows:

el 1 0 0 €1t
e | =0 cos® sind ey |, (B.35)
€3 0 —sind® cost €3t

D

where —7r < ¢ < 7. The reason that we can express matrix D in this form is that D is
orthonormal. We write it this way to simplify the analysis. The correlation between the
true shocks and the SVAR-identified shocks is given by:

E (e5e2t) = cos®, E (e3€3¢) = cos V. (B.36)

Notably. the correlation equals 1 when ¢ = 0. Consequently, identification perfor-
mance is optimal when only draws with @ close to zero are accepted by the identification
restrictions. Without loss of generality, we consider the imposition of positive shock-sign
restrictions at period #; for the second shock and at period ¢; for the third shock, i.e.,
€54 > 0and s*g‘ltj > (0. These shock-sign restrictions can be further expressed as:

{ €4, cc?s 0 +ezpsind >0 (B37)
—€2,4, 8in 9+ €3,¢; COS %> 0.

Without loss of generality, we assume that ¢34, and ¢, are positive. Solving the above
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equation, we obtain the admissible set of ¥ under the sign normalization condition
cost > 0:
€3t

En¢.
— 2 tan g < 2L, (B.38)
€3, €2t

When imposing shock-sign restrictions on periods with the largest values of true

€3t
with low correlations between the identified and true shocks (i.e., low cos¢) can fall

. . €t &1, .
shocks €5, and 3, the interval defined by — 2 and o, is wide. Consequently, draws
Wt St

within this interval and be accepted into the admissible set. Conversely, when restric-
tions are imposed on periods with smaller shock realizations, sharper inferences are

possible, as only draws with ¢ close to zero (i.e., high cos #) will be accepted.

Finally, a set of intervals, as in (B.38), will be obtained when imposing multiple
shock sign restrictions. The admissible set of ¢ should be the intersection of these in-
tervals. If the set of restrictions is sharp, the identification will closely recover the true
shocks, as only draws with ¢ close to zero will be accepted.
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C Supplementary Tables for Monte Carlo Simulations

C.1 F-statistics Reported in Selected Papers: A Review

Olea et al. (2021) introduce methods for testing weak instruments within a single IV
framework, recommending the use of the Wald statistic or a heteroskedasticity-robust
tirst-stage F statistic. Building on this, subsequent studies such as Lakdawala (2019) and
Kim et al. (2020) have adapted the F test for use with multiple proxies by regressing
the reduced-form disturbances of target equations against the chosen IVs. In our Monte
Carlo simulations, the F statistics range from 16.49 to 28.01 for scenarios with strong IVs.
For weak IV scenarios, the F statistics vary between 2.28 and 5.98. Stock et al. (2002) and
Stock and Yogo (2005) suggest a threshold of 10 to distinguish between strong and weak
IVs. In this Appendix, we aim to demonstrate that our parameter settings are intended
to ensure that the F statistics from our simulated data align closely with those reported
for strong and weak IVs in the literature. Table C.1 displays the F statistics for strong

and weak IVs as documented in previous studies.

Table C.1: F-statistics in the Proxy SVAR Literature

Panel A: Strong IVs Panel B: Weak IVs
Paper F-statistics Paper F-statistics
Our simulation 16.49, 28.01 Our simulation 2.28, 3.66, 5.98
Stock and Watson (2018) 20.50 Lakdawala and Sengupta (2021) 7.00
Lakdawala (2019) 18.91, 14.73 Olea et al. (2021) 1.60, 3.20
Mertens and Ravn (2019) 11.09; 9.15; 22.30 Noh (2024) 3.10
Cesa-Bianchi et al. (2020) 40.30
Miranda-Agrippino and Rey (2020) 17.93, 10.95
Riith (2020) 21.86
Klein and Linnemann (2021) 821.48,17.34
gregory2022us 9.94, 24.47, 10.56
Lagerborg et al. (2023) 19.30

Notes: This table presents the F-statistics from applications in the literature. Our objective is to demon-
strate that the strong and weak IV scenarios in our Monte Carlo simulations are comparable to those
observed in various applications documented in the literature. Some entries contain multiple values to
accommodate studies that feature multiple SVAR models or utilize several IVs.
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C.2 Identification Performance with Varying Number of Narrative Sign

Restrictions

Table C.2 evaluates the identification performance with varying number of shock-
sign restrictions. The data generating process is consistent with those described in the
main text. SS;, wherei = 1,2, 3,4, 5, combines the IV exogeneity restriction with i shock-
sign restrictions based on the sign of true shock realizations. NSS;, for i = 1,2,3,4,5,
employs only shock-sign restrictions based on the signs of true shocks. As expected,
identification performance improves with an increase in the number of shock-sign re-
strictions. The IV exogeneity restrictions continue to enhance identification performance
with up to five shock-sign restrictions, particularly with strong IVs.

We also assess the identification performance with ten and twenty shock-sign re-
strictions based on the sign of IVs. SSB*, where i = 10,20, combines the IV exogeneity

S IB ’SC, where

restrictions with i shock-sign restrictions based on the IVs’ signs, while S
i = 10,20, integrates these exogeneity restrictions with i sign concordance restrictions.
The counterparts without IV exogeneity restrictions, N SSZB* and N SSjB ’SC, for i = 10, 20,
follow a similar setup. The identification performance improves only when the IVs are
strong and each IV uniquely correlates with one of the shocks. In other scenarios, the
benefits are minimal as the number of shock-sign restrictions increases, due to a sig-
nificant likelihood of imposing incorrect restrictions. Particularly, when the number of
incorrect restrictions is large, no acceptable results are obtained in the admissible sets

with weak IVs for both SSP* and NSSP* when i = 20 (marked by “NAN” in the table).

We explore identification through various numbers of shock rank (SR; and NSR;
for i = 1,2,3) and historical decomposition restrictions (HD; and NHD; for i = 1,2,3).
The notation’s initial “N” represents identification using only narrative sign restrictions.
The fundamental insight is that shock rank restrictions are stringent, as they require not
only the knowledge of the periods when the restrictions are imposed but also of the in-
formation about the shocks in other periods. Imposing three shock rank restrictions, the
narrative sign-only approach alone can achieve satisfactory identification performance.
In such cases, the additional benefit of the IV exogeneity restriction becomes minimal
when combined with shock rank restrictions. Consequently, our approach is most useful
in scenarios where information about the narrative sign restrictions is available but not

strong enough to recover the true shocks, which is often the case in practice.
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Table C.2: Evaluating Identification Performances for various number of narrative sign

restrictions
Panel A: Median correlation for e; Panel B: Median RMSE(b,)
1 2 3 4 5 6 1 2 3 4 5 6
IV generating parameters
¢ 160 160 160 500 500 500 160 160 160 500 500 5.00
61 0.00 090 090 000 09 09 000 090 090 000 090 090
6> 0.00 090 -0 000 09 -090 000 09 -09 000 090 -0.90
Shock-sign restrictions based on the sign of true shock realizations
550 061 055 062 044 051 051 09 107 08 133 120 118
551 074 063 076 0.55 0.58 061 081 080 0.66 1.17 1.11 1.04
55, 08 075 084 065 071 071 059 066 054 097 093 086
SS3 08 082 09 077 079 079 050 057 046 070 069 0.78
5S4 093 08 093 080 083 08 044 056 039 065 058 0.5
SSs 094 09 094 08 08 08 040 051 037 053 055 054
NSS; 046 046 046 046 046 046 133 133 133 133 133 133
NSS; 059 059 059 059 059 059 111 111 111 111 111 111
NSS;3 069 069 069 069 069 069 087 087 08 08 087 087
NSS4 077 077 077 0.77 0.77 077 072 072 072 0.72 0.72 0.72
NSSs 082 082 08 08 082 082 064 064 064 064 064 0064
Shock-sign restrictions based on the sign of IVs
SSEs 093 080 072 067 067 061 044 057 054 079 075 0.68
SSy; 094 081 071 NaN NaN NaN 043 072 060 NaN NaN NaN

SSC 087 080 066 062 066 055 059 068 059 093 082 076
§5,5°¢ 090 082 069 073 073 059 052 066 054 076 073 0.69
NSSB 083 065 063 071 053 056 060 079 070 071 080 071
NSSE 090 068 070 NaN NaN NaN 043 072 060 NaN NaN NaN
NSSHSC 074 066 062 058 053 047 085 085 080 104 093 091

NSS%SC 0.84 0.68 0.66 0.68 0.59 056 067 078 072 0.85 0.78 0.80
Shock rank restrictions

SRy 093 089 094 0.87 0.88 088 043 050 0.39 0.56 0.56 0.56
SRy 09 095 097 094 0.95 095 033 037 030 0.38 0.40 0.39
SR3 098 097 098 0.96 0.96 097 028 031 0.28 0.30 0.32 0.32

NSRy 084 084 084 084 084 084 064 064 064 064 064 0064
NSR, 092 092 092 092 092 092 046 046 046 046 046 046
NSR3 095 095 095 09 095 095 036 036 036 036 036 036
Historical decomposition restrictions

HDy 0.88 0.80 0.88 0.76 0.77 080 054 059 051 0.64 0.62 0.58
HD, 093 089 094 0.88 0.87 088 040 046 0.38 0.48 0.47 0.47
HDj3 095 092 09 0.92 0.93 092 032 041 034 0.40 0.39 0.37

NHD, 071 071 071 0.71 0.71 071 069 0.69 0.69 0.69 0.69 0.69
NHD, 084 084 084 0.84 0.84 084 054 054 054 0.54 0.54 0.54
NHDs 0.88 0.88 0.88 0.88 0.88 088 047 047 047 0.47 0.47 047

Notes: This table compares the identification performance across different numbers of narrative sign
restrictions. The notations for the identification methods are as described in the main text.
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C.3 Monte Carlo Simulation with Additional Information about the
True Shocks

In the main text, we examine scenarios where proxy exogeneity restrictions are
combined with shock-sign restrictions, both based on the signs of true shocks and the
signs of proxies. As expected, using true shock-sign restrictions yields more efficient
identification compared to cases where shock signs are inferred only from the signs of
instruments. This highlights the risks of mechanically imposing shock-sign restrictions
based on instrument signs. We encourage researchers to explore information from mul-

tiple sources when imposing narrative sign restrictions.

In the spirit of this, we explore in this appendix a scenario where researchers have
additional proxies for each true shock for selected periods. In particular, the proxy
generating process can be formulated by:

mzy = €p¢ + €303, (C.1)

and

my = €3¢ + CaVss, (C2)

where ¢5; and ¢3; are the targeted shocks, as described in the main text. v;; ~ N (0,1) for
i = 3,4 so that parameters {3 and ¢4 control the size of measurement errors. Proxies ms3;
and my; are used solely to induce shock-sign restrictions with mj; and my; in the main
text. We impose shock-sign restrictions using the same strategy as in our technology
shock applications, where the shock-sign restrictions are imposed on periods based on
the sign of multiple proxies. Specifically, we apply shock-sign restrictions to ; only
when the signs of my; and m3; align and their absolute values exceed the average. Simi-
larly, we impose shock-sign restrictions on e3; only during periods when the signs of my;

and my; are aligned and their absolute values are above the average.

We do not use m3; and my; as IVs, considering scenarios where additional proxies
are unavailable for the entire sample period. For instance, proxies may only be available
for a specific consecutive subsample period, as seen in technology shock applications.
Alternatively, additional proxies may be sparse, providing information on the signs of
true shocks only for certain periods. In such cases, the shock-sign restrictions are based
on true shock signs when ¢3 and ¢4 approach zero, and on the sign of a single instrument
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when (3 and ¢4 approach infinity so that the alternative proxies are uninformative.

Table C.3 reports the identification performance when setting ¢3 and ¢4 to 1. Row
NSS,ip reports the identification performance when shock-sign restrictions, induced
solely by multiple proxies, are implemented. Row SS,,;, displays the identification re-
sults when shock-sign restrictions are combined with the IV exogeneity restrictions. The
combination of IV exogeneity restrictions and shock-sign restrictions leads to valid in-
ferences. We acknowledge that the identification performance can be different when the

proxy strength controlled by the parameter & and &; becomes higher or lower. !

Table C.3: Evaluating Identification Performances when shock signs are Induced by Multiple
Sources

Panel A: Median correlation for &y; Panel B: Median RMSE(b>)

1 2 3 4 5 6 1 2 3 4 5 6
IV generating parameters
¢itand ¢, 160 160 160 500 500 500 160 160 160 500 500 5.00

01 000 09 090 000 09 09 000 09 09 000 09 0.90
6> 000 09 -090 000 090 -090 000 09 -090 0.00 090 -0.90
Narra 163 155 159 114 112 113 163 155 159 114 112 113
Correct 157 148 152 107 105 104 157 148 152 107 105 104
SSmiv 093 09 08 087 08 08 041 046 041 056 052 049

NSS,i0 089 087 08 08 08 08 057 054 056 056 056 0.56

Notes: The table reports Monte Carlo simulation results based on 1000 replications. “Median correlation
for e5;” assesses the correlation between ¢5; and the corresponding shocks identified by different SVAR-
identification methods. Median RMSE(b;) corresponds to the median of the root mean square error

A 2 A
evaluated by \/ 2]3:1 21-12({0 (bjz — bjz(i)) /1000, where bj (i) is the i-th accepted draw of bj;. Row “Narr”
reports the average number of shock-sign restrictions imposed, while row “Correct” details the alignment
of these restrictions with the sign of true shocks.

Row “Narr” reports the average number of shock-sign restrictions imposed, while row “Correct”
details the alignment of these restrictions with the sign of true shocks. On average, fewer than one of
the shock-sign restrictions is incorrectly imposed across all six data-generating processes. As the proxies
become less informative with increases in ¢3 and 4, identification performance may deteriorate, caused
by an increase in the number of incorrectly imposed restrictions.
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C.4 Additional Evaluation of Identification Performance for the Iden-

tification in Main Text

In the main text, we evaluate identification performance using two primary met-
rics: (1) median correlation for €y;; and (2) RMSE (15,2). In this Appendix, we expand
our evaluation using the same identification strategies, incorporating additional metrics,
including: (1) the median correlation for e3; and the Median RMSE of b (see Table C.4);
(2) the Median RMSE of each individual parameter in the identified columns of B ma-
trix, specifically Bij fori =1,2,3 and j = 2,3 (see Tables C.5 to C.7); and (3) the bias
and standard deviations of individual parameters ( see Tables C.8 to C.13). The results
generally align with those presented in the main text, offering consistent insights.

Table C.4: Evaluating Identification Performances for €3; and bs

Panel A: Median correlation for &3 Panel B: Median RMSE(b3)
1 2 3 4 5 6 1 2 3 4 5 6

IV generating parameters and strength

¢ 160 160 160 500 500 500 160 160 1.60 500 500 5.00
th 0.00 090 09 0.00 090 09 000 090 09 0.00 090 0.90
) 0.00 090 -090 0.00 090 -090 0.00 090 -090 0.00 090 -0.90
IV and narrative sign restrictions

5SSy 093 086 093 081 082 08 041 049 041 070 059 0.60

SSBx 093 080 072 071 064 060 038 056 111 064 072 1.04
SSféSC 087 080 066 062 065 055 061 067 131 0.8 077 1.26
SRy 094 089 094 086 088 088 042 051 041 056 054 0.56
HD, 092 08 094 088 087 087 043 046 037 049 051 048
Related identification strategies

SSo 061 051 061 048 049 053 119 132 123 142 138 1.33
NSS4 077 o077 077 077 077 077 074 074 074 074 074 074
ZR 09 063 071 063 053 057 038 068 118 116 114 135

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median correlation
for e3; assesses the correlation between e3; and the corresponding shocks identified by different SVAR-
identification methods. Median RMSE(b3) corresponds to the median of the root mean square error

N 2 A
evaluated by \/ Z?:l y 1000 (b/g - b]-3(i)) /1000, where bj3(i) is the i-th accepted draw of bj3.
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Table C.5: Evaluating Identification Performances for b1 and bq3

Panel A: Median RMSE (b12) Panel B: Median RMSE (by3)

1 2 3 4 5 6 1 2 3 4 5 6
IV generating parameters and strength
¢ 160 160 160 500 500 500 160 160 1.60 500 500 5.00
th 0.00 090 090 0.00 09 09 0.00 09 09 0.00 09 090
) 0.00 090 -090 0.00 090 -090 0.00 090 -090 0.00 090 -0.90
IV and narrative sign restrictions
SS4 026 035 020 041 039 041 023 030 022 046 038 037

SSbs 025 043 021 051 053 036 022 041 048 040 050 042
SSp°C 030 044 024 055 050 041 031 043 056 054 047 063
SR, 025 031 022 036 037 037 025 032 023 039 036 034
HD, 022 027 020 029 031 030 024 026 020 033 033 028
Related identification strategies

55 043 059 037 077 068 066 053 066 053 075 072 070
NSS4 049 049 049 049 049 049 047 047 047 047 047 047
ZR 026 079 023 074 081 062 024 028 055 064 057 0.66

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median RMSE(Ejk)

corresponds to the median of the root mean square error evaluated by \/ Z?qu(b,-k - Ejk(i))z /1000, where
Bjk(i) is the i-th accepted draw of bj.
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Table C.6: Evaluating Identification Performances for by and b3

Panel A: Median RMSE (by,) Panel B: Median RMSE (by3)

1 2 3 4 5 6 1 2 3 4 5 6
IV generating parameters and strength
¢ 160 160 160 500 500 500 160 160 1.60 500 500 5.00
th 0.00 090 090 0.00 09 09 0.00 09 09 0.00 09 090
) 0.00 090 -090 0.00 090 -090 0.00 090 -090 0.00 090 -0.90
IV and narrative sign restrictions
SS4 021 024 018 033 026 031 028 031 028 037 035 035

SSbs 018 020 015 031 027 018 025 030 080 040 038 071
SSp°¢ 028 032 022 057 045 041 043 040 089 053 045 0.83
SR, 019 022 018 026 027 027 027 032 029 032 032 033
HD, 017 019 016 021 020 020 029 028 027 030 030 031
Related identification strategies

55 054 062 050 08 072 072 080 083 082 081 080 0.79
NSS4 036 036 036 036 036 036 042 042 042 042 042 042
ZR 018 082 013 074 087 063 024 055 083 066 068 0.88

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median RMSE(Ejk)

corresponds to the median of the root mean square error evaluated by \/ Z?qu(b,-k - Ejk(i))z /1000, where
Bjk(i) is the i-th accepted draw of bj.
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Table C.7: Evaluating Identification Performances for bsy and b33

Panel A: Median RMSE (b3;) Panel B: Median RMSE (bs33)

1 2 3 4 5 6 1 2 3 4 5 6
IV generating parameters and strength
¢ 160 160 160 500 500 500 160 160 1.60 500 500 5.00
th 0.00 090 090 0.00 09 09 0.00 09 09 0.00 09 090
) 0.00 090 -090 0.00 090 -090 0.00 090 -090 0.00 090 -0.90
IV and narrative sign restrictions
SS4 028 035 027 039 035 038 017 020 018 039 029 0.30

SSB 028 028 046 043 040 042 016 024 061 025 021 059
SSp°¢ 041 040 047 055 046 046 030 030 077 053 041 076
SR, 027 030 027 031 033 031 018 020 018 027 026 025
HD, 026 029 028 031 028 028 018 019 017 022 022 022
Related identification strategies

55 065 063 063 069 069 065 071 08 073 087 08 081
NSS4 042 042 042 042 042 042 037 037 037 037 037 037
ZR 023 078 052 061 072 054 016 031 067 069 070 081

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median RMSE(Ejk)

corresponds to the median of the root mean square error evaluated by \/ Z?qu(b,-k - Ejk(i))z /1000, where
Bjk(i) is the i-th accepted draw of bj.
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Table C.8: Evaluating Median Biases for b1, and by3

Panel A: Median Bias(by;)

Panel B: Median Bias(by3)

1 2 3 4 5 6 1 2 3 4 5 6
IV generating parameters and strength
¢ 160 160 160 500 500 500 160 160 1.60 500 500 5.00
61 000 09 09 000 090 090 000 09 09 000 090 0.90
6> 000 090 -090 000 09 -090 000 090 -090 000 090 -0.90
IV and narrative sign restrictions
554 -011  -007 -005 -019 -010 -021 -0.01 -0.01 -005 -024 -013 -0.17
SSbx -0.06 005 012 -022 -014 010 000 -0.00 -044 -013 016 -0.36
SSiy’C 007 003 013 -026 -020 -0.07 -0.09 -0.02 -046 -033 -015 -045
SR4 -0.09 -007 -001 -013 -0.14 -017 -0.01 -0.04 -0.07 -014 -0.07 -0.11
HD, -0.04 -001 -001 -005 -0.05 -0.09 -0.03 -0.03 -0.03 -0.08 -0.05 -0.07
Related identification strategies
550 -017 -021 -014 -052 -036 -041 -024 -033 -028 -053 -0.38 -0.46
NSS, -014 -014 -014 -014 -014 -014 -014 -014 -014 -014 -014 -0.14
ZR -0.07 -057 017 -046 -049 -030 -0.01 0.06 -053 -042 -0.29 -0.50

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median Bias (E]-k)

corresponds to the median of the bias evaluated by B]-k — bj, where Bjk is average of the accepted draws
for each replication.
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Table C.9: Evaluating the Median Biases for by and b3

Panel A: Median Bias(byy) Panel B: Median Bias(by3)
1 2 3 4 5 6 1 2 3 4 5 6

IV generating parameters and strength

¢ 160 160 160 500 500 500 160 160 160 500 500 5.00
61 0.00 09 09 000 09 09 000 09 090 000 090 090
6> 0.00 09 -090 000 09 -090 000 09 -090 000 090 -0.90
IV and narrative sign restrictions

5S4 -011  -011 -0.07 -022 -015 -024 -0.02 0.04 -0.01 -0.18 -0.04 -0.10

Ssbx -0.08 -007 001 -028 -023 -009 -003 004 -076 -011 023 -0.69
SS°¢ 012 -014 -004 -040 -029 -027 -0.14 001 -075 -022 -007 -0.73
SR, -0.10 -007 -004 -016 -016 -017 001 -0.01 -0.05 -0.08 -0.02 -0.08
HD,  -007 -008 -004 -0.10 -0.10 -0.11 -0.04 0.02 -0.04 -004 -0.02 -0.07
Related identification strategies

S5¢ -035 -039 032 -064 -052 -055 -033 -031 -032 -054 -038 -049
NSS4 -020 -020 -020 -020 -020 -020 -0.14 -014 -0.14 -014 -014 -0.14
ZR -006 -072 003 -056 -071 -037 -002 038 -081 -044 -010 -0.73

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median Bias (Ejk)

corresponds to the median of the bias evaluated by Bjk — bj, where Bjk is average of the accepted draws
for each replication.
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Table C.10: Evaluating the Median Bias for bsp and b33

Panel A: Median Bias(bs;) Panel B: Median Bias(bs3)
1 2 3 4 5 6 1 2 3 4 5 6

IV generating parameters and strength

¢ 160 160 160 500 500 500 160 160 160 500 500 5.00
61 0.00 09 090 000 09 09 000 09 090 000 090 090
6> 0.00 09 -090 000 09 -090 000 09 -090 000 090 -0.90
IV and narrative sign restrictions

55, -0.09 -005 -0.05 -012 -0.07 -021 -0.07 -0.08 -0.08 -024 -016 -0.17

SSbx 007 006 045 -0.17 002 039 -005 -0.05 -056 -022 -0.09 -0.58
SS°¢ -004 001 041 020 -0.14 026 015 -015 -0.61 -040 -026 -0.68
SR, 008 -002 000 -0.13 -008 -0.14 -004 -010 -0.09 -013 -0.10 -0.12
HD,  -0.02 -004 -000 -007 -001 -0.02 -0.09 -008 -0.06 -013 -0.11 -0.13
Related identification strategies

S5¢ -0.09 -009 -005 -034 -020 -027 -045 -053 -046 -069 -058 -0.62
NSS4 -011 -011 -011 -011 -011 -0.11 -022 -022 -022 -022 -022 -0.22
ZR -0.04 -074 052 -038 -048 008 -005 -0.07 -0.65 -054 -044 -0.70

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median Bias (E]-k)

corresponds to the median of the bias evaluated by B]-k — bj, where Bjk is average of the accepted draws
for each replication.
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Table C.11: Evaluating the Median Standard Deviations of b1, and 513

Panel A: Median Std(by3) Panel B: Median Std(bq3)
1 2 3 4 5 6 1 2 3 4 5 6

IV generating parameters and strength

¢ 1.60 160 160 500 500 500 160 160 1.60 500 500 5.00
th 0.00 090 09 0.00 090 09 000 090 09 0.00 090 0.90
6> 0.00 090 -090 0.00 09 -090 0.00 09 -0.90 0.00 090 -0.90
IV and narrative sign restrictions

SS4 019 028 016 032 030 030 019 025 016 033 029 0.29

S5 015 017 013 012 011 012 015 016 0.16 014 011 013
SSp°¢ 024 039 017 036 039 033 025 036 032 039 037 034
SR, 019 024 016 028 029 028 019 025 016 030 030 027
HD, 018 021 015 023 022 022 018 020 014 024 023 020
Related identification strategies

5Sp 036 053 033 055 056 050 043 056 045 054 058 050
NSS4 040 040 040 040 040 040 040 040 040 040 040 040
ZR 020 055 014 054 060 050 017 023 016 044 047 037

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median Std (Bjk)

corresponds to the median standard deviation of Bjk.
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Table C.12: Evaluating the Standard Deviations of by, and ba,

Panel A: Median Std(by;) Panel B: Median Std(by3)
1 2 3 4 5 6 1 2 3 4 5 6

IV generating parameters and strength

¢ 160 160 160 500 500 500 160 160 1.60 500 500 5.00
th 0.00 090 090 0.00 09 09 0.00 09 09 0.00 09 090
) 0.00 090 -090 0.00 090 -090 0.00 090 -090 0.00 090 -0.90
IV and narrative sign restrictions

SS4 015 018 012 025 020 023 022 024 020 031 028 0.26

SSB 011 011 010 011 010 010 013 0.12 018 013 010 0.12
SSp°¢ 021 027 019 032 031 027 038 036 046 038 037 038
SR, 014 016 012 019 019 019 020 023 022 026 027 024
HD, 013 013 011 016 014 014 022 020 019 022 022 0.19
Related identification strategies

55 039 048 038 053 051 046 072 074 075 061 068 0.63
NSS4 029 029 029 029 029 029 034 034 034 034 034 034
ZR 014 034 010 051 048 044 018 031 015 047 062 0.39

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median Std (Ejk)

corresponds to the median standard deviation of E]-k.
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Table C.13: Evaluating the Median Standard Deviations of by and by

Panel A: Median Std(bs;) Panel B: Median Std(bs3)
1 2 3 4 5 6 1 2 3 4 5 6

IV generating parameters and strength

¢ 160 160 160 500 500 500 160 160 1.60 500 500 5.00
th 0.00 090 090 0.00 09 09 0.00 09 09 0.00 09 090
) 0.00 090 -090 0.00 090 -090 0.00 090 -090 0.00 090 -0.90
IV and narrative sign restrictions

SS4 022 025 020 030 027 027 014 017 012 027 022 0.24

SSB 014 013 011 011 010 o010 011 011 017 011 0.10 0.11
SSp°¢ 037 036 023 038 037 031 025 025 042 033 030 036
SR, 021 022 019 02 025 025 013 0.15 013 021 020 0.19
HD, 021 020 019 022 022 021 014 014 012 015 016 0.14
Related identification strategies

55 063 062 061 060 064 058 053 060 056 052 058 052
NSS4 033 033 033 033 033 033 029 029 029 029 029 029
ZR 017 029 010 048 052 051 013 031 015 043 053 037

Notes: The table reports Monte Carlo simulation results based on 1000 replications. Median Std (Ejk)

corresponds to the median standard deviation of E]-k.
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D  Supplementary Tables and Figures for Empirical Ap-

plication

This section provides supplementary results for our empirical application of tech-
nology shocks. Section D.1 presents evidence on the correlation between technology
proxies and various economic shocks identified in the literature. Section D.2 examines
the robustness of our identification by exploring alternative numbers of shock-sign re-
strictions, reporting the effects and contributions when proxy exogeneity restrictions are
combined with 6 or 10 shock-sign restrictions. In Section D.3, we evaluate whether our
VAR model contains sufficient information to recover the technology shocks using the
fundamentalness test by Forni and Gambetti (2014). Section D.4 compares our estimated
peak technology shock effects and contributions with those reported in recent SVAR
papers. Section D.5 compares our benchmark results with those from the max-share
methods of Barsky and Sims (2011) and Chahrour et al. (2023). Section D.6 explores the
identification performance when replacing the narrative sign restrictions in our bench-
mark identification with zero-correlation restrictions between technology shocks and
IVs. Section D.7 documents the results when shocks are identified by proxy exogeneity
restrictions using the Sign Concordance method of Budnik and Riinstler (2023), which
explicitly models the probability that shock-sign restrictions are imposed incorrectly.
Section D.8 re-estimates these effects using a robust prior, as described in Section A.2,
and assesses the impact of the prior using the method from Giacomini and Kitagawa
(2021). Section D.9 performs joint inference under a uniform prior over impulse re-
sponses using the method detailed in Section 2.3 and Online Appendix A.3. Section
D.10 examines whether the identified technology shocks are supply-side or demand-
side shocks by including the inflation rate in the benchmark model. Section D.11 ex-
plores whether our approach identifies technology shocks primarily by truncating the
reduced-form parameters or by truncating the identified set for the structural parame-
ters, conditional on the reduced-form parameters. Section D.12 evaluates the robustness
of our empirical findings by imposing additional inequality restrictions on the correla-
tions between IVs and structural shocks, as Piffer and Podstawski (2018) suggest.

45



D.1 The Correlation between the Technology Proxies and Alternative

Shock Measures

In this section, we assess IV exogeneity by examining the correlation between the
IVs and various economic shocks identified in the literature. As shown in the follow-
ing tables, the technology proxies show no significant correlation with shocks related to
monetary policy, government spending, taxes, oil supply, sentiment, or financial mar-
kets.

Table D.1: Correlation of the Patent Series with Alternative Shock Measures

Shock Source 1Y p-value Sample
Monetary policy Gertler and Karadi (2015) -0.012  0.908 1990M1-2012M6
Bu et al. (2021) 0.093  0.362 1994M1-2018M6
Jarociniski and Karadi (2020)  0.144 0.128 1990M2-2018M6
Government spending Ramey (2011) 0.033 0.632 19600Q1-20130Q4
Ben Zeev and Pappa (2017) 0.024 0.741 1960Q1-2007Q4
Tax Leeper et al. (2012) 0.032  0.667 1960Q1-2005Q4
Mertens and Ravn (2014) -0.065 0.371 1960Q1-20070Q4
Oil supply news Kénzig (2021) 0.076  0.318 1974M1-2017M12
Sentiment Lagerborg et al. (2023) 0.071  0.344 1973M1-2018M6
Financial TED spread -0.079 0.373 1986M1-2018M6

Cesa-Bianchi and Sokol (2022) -0.009 0.914 1980M7-2016M12

Notes: The table presents the correlation between the patent series and various shock measures from
existing literature. The correlation coefficient, denoted as p, measures the strength and direction of the
relationship, while the accompanying p-value indicates whether the correlation is statistically significant.
In cases where the shock measure is only accessible monthly, it is aggregated by summing across months.
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Table D.2: Correlation of the TFP Series with Alternative Shock Measures

Shock Source [y p-value Sample
Monetary policy Gertler and Karadi (2015) -0.008 0.944 1990M1-2012M6
Bu et al. (2021) -0.165 0.105 1994M1-2018M6
Jarociniski and Karadi (2020)  0.031  0.745 1990M2-2018M6
Government spending Ramey (2011) 0.090 0.188 1960Q1-20130Q4
Ben Zeev and Pappa (2017) 0.012 0.873 1960Q1-2007Q4
Tax Leeper et al. (2012) -0.046 0.533 19600Q1-20050Q4
Mertens and Ravn (2014) -0.061 0.397 1960Q1-2007Q4
Oil supply news Kénzig (2021) 0.009 0.904 1974M1-2017M12
Sentiment Lagerborg et al. (2023) -0.054 0.468 1973M1-2018M6
Financial TED spread 0.084 0.340 1986M1-2018M6
Cesa-Bianchi and Sokol (2022) 0.008  0.919 1980M7-2016M12

Notes: The table presents the correlation between TFP series and various shock measures from existing
literature. The correlation coefficient, denoted as p, measures the strength and direction of the
relationship, while the accompanying p-value indicates whether the correlation is statistically significant.
In cases where the shock measure is only accessible monthly, it is aggregated by summing across months.
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D.2  Alternative Number of Narrative Sign Restrictions

In our benchmark analysis, we impose shock-sign restrictions during periods when
proxies from different sources align in sign and exceed their respective averages. We
identify nine periods that meet the criteria for unanticipated technology shocks and
eight periods for anticipated technology shocks. In this section, we test the robustness of
our findings by varying the number of restrictions imposed. Specifically, we present the
results when restrictions are applied to ten periods for both shocks in Figures D.1 and
D.2, and to six periods for both shocks in Figures D.3 and D.4. The selection of these
periods is again based on the size and values of the proxies, but with different thresholds
than in the benchmark. The results remain robust when using an alternative number of
narrative sign restrictions, although the credible bands are slightly wider when fewer

restrictions are imposed.
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Figure D.1: Impulse Responses by Imposing 10 Narrative Sign Restrictions

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for impulse responses.
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Figure D.2: Forecast Error Variance Decomposition by Imposing 10 Narrative Sign Restrictions

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for forecast error variance decompositions.
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Figure D.3: Impulse Responses by Imposing 6 Narrative Sign Restrictions

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for impulse responses.
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Figure D.4: Forecast Error Variance Decomposition by Imposing 6 Narrative Sign Restrictions

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for forecast error variance decompositions.
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D.3 Fundamentalness Test of Forni and Gambetti (2014)

The standard SVAR-identification method assumes that the structural shocks can be
expressed as linear combinations of the residuals of the linear projection of a vector of
variables onto their past values. However, if the information set contained in the VAR
model does not span that of the agents, the structural shocks cannot be obtained from a
VAR and the identification method fails.

In this section, we apply the procedure proposed by Forni and Gambetti (2014)
to test whether our VAR model contains sufficient information. The information suf-
ticiency testing procedure can be summarized as follows. First, estimate the reduced-
form VAR model and identify the structural shocks of interest. Second, collect a large
macroeconomic data set and compute the first P principal components. Finally, test for
orthogonality of the estimated structural shocks with respect to L lags of the principal
components by using a standard F-test.

We perform the information sufficiency test for P = 1,2,...,8 and L = 1,2,3,4.
The large data set is the same as that used by Forni and Gambetti (2014), covering 107
US quarterly macroeconomic series. The results of the information sufficiency test are
reported in Table D.3.

53



Table D.3: Test of orthogonality: p-values of the F-test of the
structural shocks

Number of lags
Regressor 1lag 2 lags 3 lags 4 lags
Anticipated Technology
£(1,1) 0.50 0.52 0.48 0.47
£(1,2) 0.32 0.26 0.28 0.37
£(1,3) 0.39 0.30 0.28 0.45
f(1,4) 0.28 0.13 0.18 0.27
£(1,5) 0.31 0.16 0.22 0.31
£(1,6) 0.19 0.15 0.17 0.24
£(1,7) 0.21 0.16 0.22 0.26
£(1,8) 0.19 0.20 0.27 0.20
Unanticipated Technology
f(1,1) 0.52 0.60 0.58 0.59
£(1,2) 0.57 0.63 0.63 0.75
£(1,3) 0.64 0.60 0.66 0.74
f(1,4) 0.61 0.64 0.75 0.80
£(1,5) 0.57 0.49 0.59 0.63
£(1,6) 0.60 0.52 0.61 0.70
£(1,7) 0.58 0.56 0.68 0.74
£(1,8) 0.63 0.66 0.75 0.74

Notes: The table presents the p-values for F test for orthogo-
nality of the estimated structural shocks with respect to L =
1,2,3,4 lags of the first P =1,2,...,8 principal components.
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D.4 Comparing Technology Shock Effects and Contributions With Es-
tablished Literature

This section compares the peak technology shock effects and contributions with
those reported in six recent SVAR papers. Four of these papers use various max-share
approaches and identify technology shocks by imposing restrictions on variance decom-
positions. The other two papers, Klein and Linnemann (2021) and Cascaldi-Garcia and
Vukoti¢ (2022), employ the single IV method for identification. We calculate these ef-
fects based on replication packages available on the journal’s or the author’s website
and cross-check our replication against the results reported in the papers. Our findings
indicate smaller effects and contributions than those reported in most of the existing
literature. Our estimates of anticipated technology shock effects are most closely aligned
with those of Klein and Linnemann (2021), but we estimate lower contributions and
effects for unanticipated technology shocks.

Table D.4: The Effects and Contributions of Anticipated technology shocks

Paper Method, Sample Technology Output Consumption Stock Prices
Panel A: Median Peak Effects
Our paper 60Q1-18Q2 0.37 0.46 0.39 6.59
Barsky and Sims (2011) MS, 60Q1-07Q4 0.22 04 0.38 NA
Kurmann and Otrok (2013) MS, 59Q2-05Q2 0.57 0.71 0.84 1.50
Klein and Linnemann (2021) IV, 73Q1-19Q1 0.27 0.43 0.50 6.54
Gortz et al. (2022) MS, 84Q1-17Q1 0.44 0.60 0.56 5.02
Cascaldi-Garcia and Vukoti¢ (2022) 1V, 61Q1-10Q4 0.34 0.36 0.23 4.88
Chahrour et al. (2023) MS, 60Q1-18Q4 0.35 0.88 0.89 4.76
Panel B: Median Peak Shock Contributions
Our paper 600Q1-18Q2 22% 21% 22% 68%
Barsky and Sims (2011) MS, 60Q1-07Q4 45% 43% 52% NA
Kurmann and Otrok (2013) MS, 59Q2-05Q2 47% 42% 51% 31%
Klein and Linnemann (2021) IV, 73Q1-19Q1 18% 21% 26% 41%
Gortz et al. (2022) MS, 84Q1-17Q1 38% 62% 71% 63%
Cascaldi-Garcia and Vukoti¢ (2022) 1V, 61Q1-10Q4 4% 12% 20% 46%
Chahrour et al. (2023) MS, 60Q1-18Q4 35% 87% 95% 40%

Notes: “MS” stands for the Max-share approach, while “IV” denotes the instrumental variable method.
Some entries are marked as “NA” because the related variable or shock is not examined in the
corresponding paper.
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Table D.5: The Effects and Contributions of Unanticipated technology shocks

Paper Method, Sample Technology Output Consumption Stock Prices
Panel A: Median Peak Effects
Our paper 600Q1-18Q2 0.52 0.33 0.18 2.04
Barsky and Sims (2011) MS, 60Q1-07Q4 0.70 NA NA NA
Kurmann and Otrok (2013) MS, 59Q2-05Q2 0.77 0.34 0.43 0.51
Klein and Linnemann (2021) 1V, 73Q1-19Q1 0.45 0.30 0.40 3.24
Gortz et al. (2022) MS, 84Q1-17Q1 0.60 0.34 NA 2.07
Cascaldi-Garcia and Vukoti¢ (2022) 1V, 61Q1-10Q4 NA NA NA NA
Chahrour et al. (2023) MS, 60Q1-18Q4 0.68 0.22 0.04 0.10
Panel B: Median Peak Shock Contributions
Our paper 60Q1-18Q2 79% 17% 6% 6%
Barsky and Sims (2011) MS, 60Q1-07Q4 100% NA NA NA
Kurmann and Otrok (2013) MS, 59Q2-05Q2 100% 11% 17% 5%
Klein and Linnemann (2021) IV, 73Q1-19Q1 95% 18% 15% 11%
Gortz et al. (2022) MS, 84Q1-17Q1 100% 17% 17% 11%
Cascaldi-Garcia and Vukoti¢ (2022) 1V, 61Q1-10Q4 NA NA NA NA
Chahrour et al. (2023) MS, 60Q1-18Q4 94% 11% 2% 19%

Notes: “MS” stands for the Max-share approach, while “IV” denotes the instrumental variable method.
Some entries are marked as “NA” because the related variable or shock is not examined in the
corresponding paper.
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D.5 Max-share Approach

A prevalent strategy to identify technology shocks is the max-share approach. This
section compares our benchmark results with those obtained using the max-share meth-
ods proposed by Barsky and Sims (2011) and Chahrour et al. (2023). Barsky and Sims
(2011) assume that only unanticipated technology shocks immediately impact produc-
tivity. They identify anticipated technology shocks by maximizing their contributions
to productivity, conditioned on unanticipated technology shocks, over a predetermined
horizon.? The identification scheme of Chahrour et al. (2023) also proceeds in two steps
but with reverse identification ordering. It is worth noting that the max-share identifi-
cation hinges on researchers’ subjective belief in shock contributions without referring
to any historical observations. As a result, a preponderant share of posterior draws im-
plies shock realizations with signs at odds with the IVs, as documented in the “BS” and
“CCP” columns of Table 2.

Figures D.5 and D.6 delineate the effects and contributions of the technology shocks
identified using the procedures of Barsky and Sims (2011) (represented by black dashed
lines) and Chahrour et al. (2023) (represented by red dash-dotted lines). Similar to the
benchmark results, both max-share methods demonstrate substantial comovements in
macroeconomic variables following favorable anticipated technology shocks. However,
there are notable differences between the results from the max-share method and our
benchmark model. The credible bands of the effects and contributions of Barsky and
Sims (2011) anticipated technology shocks are remarkably wider. Moreover, both max-
share methods predict quantitatively larger effects and contributions of anticipated tech-
nology shocks compared to the benchmark estimation. For instance, the Chahrour et al.
(2023) anticipated technology shocks are held accountable for 73%, 85%, and 94% of the
variations in labor productivity, output, and consumption, respectively. The inference
of unanticipated technology shocks broadly concurs with our benchmark estimation.
Nevertheless, it is noteworthy that the unanticipated technology shocks identified by
Chahrour et al. (2023) exert suppressing effects on output and consumption at long hori-

zons.

21t is worth noting that, in implementing the Barsky and Sims (2011) scheme, we adopt TFP as the
measure of productivity, although the results remain robust when using labor productivity instead.
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Figure D.5: Impulse Responses by Max-Share Approach

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for impulse responses when technology shocks are identified with both IVs and
narrative sign restrictions. The black dashed lines and the red dash-dotted lines plot impulse responses
to the shocks identified, respectively, using Barsky and Sims (2011) and Chahrour et al. (2023) methods,
with thick lines indicating the median and thin lines informing 68% credible bands.
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Figure D.6: Variance Decompositions by Max-Share Approach

Notes: The blue solid lines and shaded areas represent, respectively, the median and the 68% (point-wise)
credible bands for variance decompositions when technology shocks are identified with both IVs and
narrative sign restrictions. The black dashed lines and the red dash-dotted lines plot impulse responses
to the shocks identified, respectively, using Barsky and Sims (2011) and Chahrour et al. (2023) methods,
with thick lines indicating the median and thin lines informing 68% credible bands.
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D.6 Combining IVs and Zero Restrictions

In this Section, we conduct robustness checks by introducing zero-correlation re-
strictions between technology shocks and IVs as an alternative to the narrative sign
restrictions in our benchmark model. We consider two specific strategies: (i) assuming
that the patent-based IV is uncorrelated with unanticipated technology shocks (“zero-
anticipated”); and (ii) assuming that TFP growth is uncorrelated with anticipated tech-
nology shocks (“zero-unanticipated”).

The results, presented in Figures D.7 and D.8, show that both zero-correlation re-
striction strategies yield similar shock effects and contributions as the benchmark model,
with the exception of lower contributions of anticipated technology shocks to stock prices
and labor productivity. However, it is noteworthy that introducing additional zero re-
strictions may lead to distinct implications compared to our benchmark model in at
least two aspects. Firstly, as detailed in Table 2, both “zero-anticipated” and “zero-
unanticipated” strategies accept more than half of the posterior draws with opposite
signs for instrumental variables (IVs) in specific quarters, such as 91Q2, 00Q1, and 03Q3
for anticipated technology shocks, and 96Q2 and 15Q3 for unanticipated technology
shocks. Secondly, both “zero-anticipated” and “zero-unanticipated” strategies suggest
a low correlation between IVs and shock realizations. As illustrated in Figure D.9, the
benchmark model indicates that 37.4% of posterior draws imply correlations between
anticipated technology shocks and Total Factor Productivity (TFP) growth with absolute
values exceeding 0.2. In contrast, when applying “zero-anticipated” restrictions, only 8
out of 10,000 posterior draws exhibit correlations beyond the range of [-0.2, 0.2].
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Figure D.7: Impulse Responses by IVs and Zero Restrictions

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for impulse responses when technology shocks are identified with both IVs and
narrative sign restrictions. The red dash-dotted lines and the black dashed lines plot impulse responses,
to shocks identified, respectively, using IVs together with zero-correlation restriction between patent-
based IV growth and unanticipated technology shocks, and IVs together with zero-correlation restriction
between TFP growth and anticipated technology shocks.
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Figure D.8: Forecast Error Variance Decomposition by IVs and Zero Restrictions

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for forecast error variance decompositions when technology shocks are identified
with both IVs and narrative sign restrictions. The red dash-dotted lines and the black dashed lines plot
variance decomposition, by shocks identified, respectively, using IVs together with zero-correlation re-
striction between patent-based IV growth and unanticipated technology shocks, and IVs together with
zero-correlation restriction between TFP growth and anticipated technology shocks.
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Figure D.9: The Posterior Distribution of Realized Correlation between Shocks and Proxies

Notes: The figure plots the posterior distribution of the correlation between each of the two identified
SVAR shocks and IVs based on 10000 posterior draws under three different identification strategies, with
anticipated shocks in the upper panel and unanticipated shocks in the lower panel. Each of the three
columns (from left to right) corresponds, respectively, to the identification approach with shocks identi-
fied with IVs and narrative sign restrictions, with IVs and the restriction that unanticipated technology
shocks are uncorrelated with the patent-based IV, and with IVs as well as the restriction that anticipated
technology shocks are uncorrelated with current TFP growth.
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D.7 Combining IVs and Sign Concordance Approach

In this section, we make the first attempt in the literature to combine the IV ap-
proach with the Sign Concordance (SC) method of Budnik and Riinstler (2023), allowing
for incorrect imposition of shock-sign restrictions. In the following, We explain how to
integrate the IV with the SC approach, followed by an analysis of the shock effects and
contributions when SC restrictions are applied. Our primary findings remain robust,
although the range of uncertainty increases, particularly when the hyperparameter gov-
erning the possibility of incorrect imposition, denoted as A, to values such as 0.8 and
0.9.

D.7.1 Combining IV with SC approach

To account for potential errors in the econometrician’s beliefs, we adopt the Sign
Concordance (SC) method proposed by Budnik and Riinstler (2023), which addresses
imperfect sign concordance under narrative sign restrictions. Our paper discusses three
types of narrative sign restrictions: shock-sign restrictions, historical decomposition re-
strictions, and shock rank restrictions. When applying the SC method, we follow Budnik
and Riinstler (2023) and assume that only shock-sign restrictions are imposed to identify
structural shocks.

We define the share of instances where the signs of structural shocks align with
shock-sign restrictions as ¢ = Ntryug/s, where s is the total number of narrative sign
restrictions and Ntryg is the number of instances for which the signs of structural shocks
coincide with narrative sign restrictions. The number of correct signs follows a binomial
distribution:

p(s¢] Ao, Av) = f(sEs,M), (D.1)

where A is the unknown probability of the correct classification of a single event. If A =1,
we accept the draw of the structural parameter only when all narrative sign restrictions
are satisfied. However, if we believe that narrative restrictions may contain errors, we
accept the draw of the structural parameter with a certain probability f (s¢;s, A), which
depends on the value of A. Following Budnik and Riinstler (2023), we assume A ~ ﬁ(p, q)
over support [A, 1], where B(p,q) is a beta distribution. In the empirical analysis, we set
p =g = 1 and let A vary between 0.8 and 0.9, as suggested by Budnik and Riinstler
(2023).
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The SC method is implemented using the following algorithm:

Algorithm D.1 1. Use the Algorithm from Arias et al. (2021) to independently draw (Ag, A.).

2. Calculate the number of instances where the signs of structural shocks align with narrative
sign restrictions: NTryg = s¢.

3. Draw A from a beta distribution: A ~ B(p, q) over support [A,1].
4. Accept the draw of (Ao, A1) with probability f (s&;s, ).
5. Repeat Steps 1—4 until the required number of draws is obtained.

6. Re-sample (Ag

, A) with replacement using the importance weights
NGN;4.0) (Ao,

AL) /p (Ao, AL) .

D.7.2 Identification Results
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Figure D.10: Impulse Responses by IVs and Sign Concordance Criterion (A = 0.9)

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for impulse responses when technology shocks are identified with both IVs and sign
concordance criterion.
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Figure D.11: Impulse Responses by IVs and Sign Concordance Criterion (A = 0.8)

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for impulse responses when technology shocks are identified with both IVs and sign
concordance criterion.
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Figure D.12: Forecast Error Variance Decomposition by IVs and Sign Concordance Criterion

(A = 0.9)

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for forecast error variance decomposition when technology shocks are identified
with both IVs and sign concordance criterion.
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Figure D.13: Forecast Error Variance Decomposition by IVs and Sign Concordance Criterion
(A =10.8)

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for forecast error variance decomposition when technology shocks are identified
with both IVs and sign concordance criterion.
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D.8 Impulse Responses with Robust Prior

We re-evaluate the effects of technology shocks under a robust prior using the algo-
rithms detailed in Appendix A.2. The lower and upper bounds of the impulse responses
are computed from the identified sets by solving the optimization problem with Al-
gorithm A.3. To ensure convergence to the global optimum, we employ 25 different
initial values. Figures D.14 and D.15 present the set of posterior means for the impulse
responses (vertical bars) and the smallest robust credible region with 68% credibility
(solid curve) for the robust multiple prior Bayesian approach. We display the poste-
rior mean (point) and the 68% highest posterior density region (dashed curve) for the
standard single prior Bayesian approach. The effects of technology shocks using robust
multiple prior Bayesian approach are very similar to those using standard single prior

Bayesian approach.

We further use diagnostic tools to measure the informativeness of the prior choice.
Following Giacomini and Kitagawa (2021) and Giacomini et al. (2022b), the informative-
ness is defined as:

width of a single prior Bayesian credible region of 7;;;, with credibility «

~ widthof a multiple prior Bayesian credible region of 7;;, with credibility a’ (D2)

This measure captures how much the credible region of 7;; , is tightened by selecting
a specific prior for the rotation matrix. The results, shown in Figures D.16 and D.17 and
Table D.6, demonstrate the diagnostic statistic is mostly below 0.2. We conclude that
imposing a uniform prior for the rotation matrix does not significantly affect posterior

inference in our empirical application.
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Figure D.14: IRFs to Anticipated Technology shock

Notes: In each figure, the points are the single prior Bayesian posterior means, the vertical bars
are the set of multiple prior posterior means, the dashed curves are the upper and lower bounds
of the single prior Bayesian highest posterior density regions with credibility 68%, and the solid
curves are the upper and lower bounds of the multiple prior credible regions with credibility
68%.
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Figure D.15: IRFs to Unanticipated Technology shock

Notes: In each figure, the points are the single prior Bayesian posterior means, the vertical bars
are the set of multiple prior posterior means, the dashed curves are the upper and lower bounds
of the single prior Bayesian highest posterior density regions with credibility 68%, and the solid
curves are the upper and lower bounds of the multiple prior credible regions with credibility
68%.
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Figure D.16: Informativeness of the choice of prior for Anticipated Technology shock

Notes: Informativeness of the choice of prior is calculated using equation (D.2).
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Figure D.17: Informativeness of the choice of prior for Unanticipated Technology shock

Notes: Informativeness of the choice of prior is calculated using equation (D.2).
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Table D.6: Informativeness of the choice of prior

Productivity ~ Output Consumption Investment Employment Stock Price

Anticipated Technology Shock

Average 0.13 0.06 0.05 0.06 0.04 0.06

Minimum 0.05 0.03 0.03 0.03 0.03 0.04

Maximum 0.22 0.12 0.08 0.09 0.05 0.15
Unanticipated Technology Shock

Average 0.15 0.16 0.16 0.11 0.11 0.15

Minimum 0.08 0.12 0.15 0.08 0.07 0.10

Maximum 0.19 0.20 0.20 0.20 0.20 0.23

Notes: Informativeness of the choice of prior is calculated using equation (D.2).
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D.9 Inferences with Uniform Priors over Impulse Responses

In this section, we present the impulse responses obtained by imposing a uniform
prior over impulse responses, following the method described in Section A.3. Figure
D.18 displays the traditional impulse responses with 68% credible sets, representing the
uncertainty using the marginal density of the impulse responses. The marginal inference
is similar to our benchmark results, providing further evidence that the prior on the
orthonormal matrix plays a minimal role in our analysis. Figure D.19 shows the joint
posterior impulse responses using the approach of Inoue and Kilian (2022), indicating
that the credible limits are qualitatively similar to the pointwise error bands, though

with a wider range.
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Figure D.18: Impulse Responses with 68% Pointwise Credible Bands under a Uniform Prior for
Impulse Responses

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands.
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Figure D.19: Joint Posterior Impulse Responses under Uniform Priors for Impulse Responses

Notes: The red thick lines indicate the estimator of the impulse responses using Equation (A.24) and the
blue thin lines represent the 68% joint credible set using Equation (A.25).
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D.10 Robustness Check: Including the Inflation Rate in the Model

An intriguing question is whether our identification method reveals a supply-side
or demand-side nature of technology shocks. To investigate this question, we include
the inflation rate as an additional endogenous variable in our model. Figures D.20 and
D.21 present the impulse responses and variance decompositions of all the endogenous
variables. Most of our benchmark results remain robust with the inclusion of the in-
flation rate. In addition, an anticipated technology shock induces a persistent decline
in inflation, while an unanticipated technology shock leads to a decrease in inflation
within the first six quarters post-shock. Thus, in the short to medium term, both types
of technology shocks behave like aggregate supply shocks, causing opposite movements
in output and inflation.

There are three key observations to highlight. First, unlike stock prices, the infla-
tion rate responds to anticipated technology shocks with a lag, with the effects most
pronounced when the positive technology news materializes. Second, unanticipated
technology shocks cause the inflation rate to increase over longer horizons, beyond six
quarters. This suggests that the general equilibrium effects of unanticipated technology
shocks, through their interactions with other endogenous variables, can be complex. We
leave a formal analysis of these results to future research. Third, both types of technology
shocks contribute minimally to the inflation rate.
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Figure D.20: Impulse Responses when Inflation Rate is Included in the SVAR Model

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for impulse responses. 78
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Figure D.21: Variance Decomposition when Inflation Rate is Included in the SVAR Model

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for forecast error variance decompo?&ons.



D.11 Inference versus Identification

Giacomini et al. (2022a) argue that combining proxy identification with narrative
sign restrictions can influence the posterior in two ways. First, it can truncate the
identified set for the structural parameters conditional on the reduced-form parame-
ters, a process known as sharpening identification. Second, it can truncate the space of
reduced-form parameters that yield a non-empty identified set, referred to as sharpen-
ing inference. It would be valuable to explore which of the two effects drives the “more
informative inference” about the impacts of shocks.

In this Appendix, we begin by examining whether narrative sign restrictions pri-
marily influence the posterior through sharpening identification. To do this, we compare
the confidence bands of the impulse responses while keeping reduced-form parameters
fixed. Next, we evaluate whether the narrative sign restrictions have altered the posterior
distributions of the reduced-form parameters, using related statistical measures from In-
oue and Kilian (2020) and Inoue and Kilian (2022). Both approaches suggest that, in our
technology shock application, narrative sign restrictions primarily sharpen identification
rather than inference.

D.11.1 Assessing the Role of Narrative Sign Restrictions in Sharpening Identifica-

tion

To evaluate the role of narrative sign restrictions in enhancing identification, we fix
the set of reduced-form parameter draws that yield a non-empty identified set under
these narrative sign restrictions. We then compare the widths of the sets of posterior
means (under robust priors) with and without narrative sign restrictions.® Specifically,

we denote

PN = {APN, AN, diag (Q'N, QYY) i=1,2,..., M}

as the posterior draws of the reduced-form parameters and orthonormal matrices
under narrative sign restrictions. We then fix the reduced-form parameters ([\g)’N, [\ﬁ) ’N)
and draw the orthonormal matrices without narrative sign restrictions (i.e., with only
proxy exogeneity restrictions). We denote the set of accepted posterior draws with the

fixed reduced-form parameters as

3We thank one of the referees for suggesting this method to quantify the role of narrative sign restric-
tions in improving the precision of identification.
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pre = JAPN, RPN, diag (QF, Q%) i=1,2,..., M}

The statistic used to quantify the role of narrative sign restrictions in “sharpening
identification” is defined as:

Role of ”“sharpening identification” =

The width of the set of posterior means of 7;; using PN

— , D.3
The width of the set of posterior means of 7;; ,using PR* ©3)

where 7;;;, denotes the impulse response of the i-th variable to the j-th shock at horizon

h.

This statistic ranges between zero and one, with values close to one indicating that
the restrictions significantly sharpen the identification. The results of this statistic for
our application to technology shocks are presented in Figure D.22 and Table D.12. The
values of the statistic for all impulse responses are close to one, indicating that narrative
sign restrictions play a crucial role in enhancing identification.
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Figure D.22: Role of “sharpening identification”

Notes: In each figure, the lines plot the statistics of the role of “sharpening identification” using equation
(D.3).
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Table D.12: Role of “sharpening identification”

Productivity =~ Output Consumption Investment Employment Stock Price
Anticipated Technology Shock

Average 0.95 0.96 0.96 0.96 0.96 0.97

Minimum 0.93 0.94 0.95 0.94 0.95 0.96

Maximum 0.96 0.97 0.97 0.96 0.97 0.97
Unanticipated Technology Shock

Average 0.95 0.94 0.94 0.94 0.94 0.94

Minimum 0.94 0.94 0.93 0.94 0.94 0.93

Maximum 0.97 0.96 0.94 0.96 0.95 0.94

Notes: The table shows the statistics of the role of “sharpening identification” using equation (D.3).

D.11.2 The Shifts in Reduced-form Parameters

We also test whether imposing additional narrative restrictions significantly shifts
the posterior distribution of the reduced-form parameters. The test results indicate that
the shifts are statistically insignificant. Specifically, we evaluated the average change in
the central tendency and the changes in the concentration of probability mass around
the reduced-form parameter, as proposed by Inoue and Kilian (2020). The change in the
central tendency of the distribution is formulated as follows:

g

=Y

i=1

where ny represents the number of parameters in 8, M denotes the number of Bayesian
draws (10,000 in our estimation), @ZZ\V/I ; is the i-th element of the estimated central tendency
of the reduced-form parameter distribution under narrative sign restrictions, and 6%, ; is

the corresponding estimate without such restrictions.

Next, the concentration of the probability mass around the reduced-form parameter

within & credible intervals is evaluated by:

CN o CR
de = 100 (T) , (D.5)
Z%(l_”‘) an 9.(]‘)'N_§N ) ZAEO‘”‘) an Ql(j)'R_éR . .
N _ =1 i=1|"i M,i R __ =1 i=1|"i M,i (]),N .
where CN = = Mo, ,CR =~ Mg ,and 6;”"" contains the pa-

rameters in the (1- o) x100% (set to 68%) joint credible sets evaluated using the approach
of Inoue and Kilian (2022).
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Table D.13 confirms that both d; and d¢ fall within the 95% credible bands as as-
sessed by the resampling method. We therefore conclude that there is no significant
evidence to suggest that narrative sign restrictions influence the distribution of reduced-

form parameters.

Table D.13: Testing for the shifts in reduced-form parameter distribution

Statistics Value 95% Credible Bands
dr 0.170 (0.156,0.197)
dc 0.358 (-2.537,1.358)

Notes: The credible set is produced using the resampling approach in three steps: Step 1. Draw reduced-
form parameters under narrative sign restrictions M times, denoted as ®\A™¢, Draw reduced-form
parameters without narrative sign restrictions M times, denoted as @Y°Narative  Calculate d; and dc
using @Narative and @NeNamative - Gtep 2. Draw additional reduced-form parameters without narrative

. L. . —=NoN i A . i
sign restrictions M times, denoted as ®M(,)1 ATAYE - Calculate the test statistics using @YPNarmative and
@?Iﬁ\] ATAYE  denoted as d(Ll) and dg ), Step 3. Repeat Step 2 1000 times to obtain dg) and dg), where

i=1,2,...,1000. Calculate credible bands using d(Li) and d(i), wherei =1,2,...,1000.
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D.12 Robustness Checks with Additional Correlation Restrictions

In this section, we assess the robustness of our empirical findings by imposing ad-
ditional inequality restrictions on the correlations between IVs and structural shocks, as
proposed by Piffer and Podstawski (2018).

Consider the case where we use two IVs to identify two structural shocks. Equation
(7) implies that:

Vit Vi

Vor Voo

| —
\%4

. (D.6)

£ | (™ <€ . t) ~ |E(myen—1s) E(mysent)
1 , =
Moy oL E(moten—_14) E(moteny)

Piffer and Podstawski (2018) propose imposing sign restrictions on the matrix V.
Specifically, they suggest the following restrictions:

Vii >0, Vx>0, (D.7)

Viig — Vip > lp,' Voo — Vo1 > IP (D8)

In their study, Piffer and Podstawski (2018) set i to 0.1. We incorporate these addi-
tional sign restrictions into our baseline model, and the results are presented in Figures
D.23 and D.24. Our findings indicate that the results remain robust when these addi-
tional sign restrictions are imposed. The results are also similar when setting ¥ to 0 or
0.2.
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Figure D.23: Impulse Responses by Imposing Additional Sign Restrictions

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for impulse responses.
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Figure D.24: Forecast Error Variance Decomposition by Imposing Additional Sign Restrictions

Notes: The blue solid lines and shaded areas represent, respectively, the median and 68% (point-wise)
credible bands for forecast error variance decompositions.
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E Labor Search and Matching Model

The empirical exercise in the main text establishes a plethora of empirical evidence
about the effects of technology shocks based on our novel identification strategy. To
check the theoretical coherence of the empirical findings, we turn to explore to what
extent a micro-founded structural model can be tuned to replicate the SVAR shock ef-
fects. In particular, we modify the labor search and matching model of Chahrour et al.
(2023) to allow for variable capital utilization and then estimate structural parameters to
replicate the empirical responses to anticipated technology shocks. We place anticipated
technology shocks in the limelight since unanticipated technology shocks have been es-
timated to be of little empirical relevance to business cycle fluctuations. The exercise
entitles us to evaluate several critical parameters that facilitate the replication of empir-
ical dynamics. It also serves as a litmus test to understand the theoretical implications

delivered by different SVAR-identification procedures.

The search and matching model is featured with three types of agents: households,
tirms, and the government. Households derive utility from consumption and leisure
from non-participation in labor. They are either employed, searching for work, or not
in the labor force. In each period, a portion of the households search for a job and
get matched. Previous matches dissolve with an exogenous probability. Households
own capital and choose capital utilization rate optimally. Firms produce output with
non-stationary technology. Each period, firms post vacancies and pay costs for posting
vacancies, which include both steady-state costs and adjustment costs. The stock price of
a firm depends on both the value of the firm and leverage. The government runs a bal-
anced budget and resorts to lump-sum taxes to finance its spending and unemployment

benefit transfers.

In the sections that follow, we outline the components of our study as follows: the
model environment is described in Section E.1; the stationary equilibrium conditions
are presented in Section E.2; parameter calibration is discussed in Section E.3; and the

implications of the model are analyzed in Section E 4.

E.1 Model Environment

The representative households are ex-ante identical with preference in the form of
Greenwood et al. (1988) adjusted as in Akinci and Chahrour (2018) and Chahrour et al.
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(2023) to allow for balanced growth. This type of preference eliminates the wealth effects
on labor supply that may cause labor supply to fall in response to positive news shocks.
Households derive utility from consumption (C; ) and leisure from non-participation in

labor force in the form of:

(Ci—pXiEf) 7

— ) (E.1)

U(Cy,F)=

where F; denotes the measure of household members in the labor force, X; represents
a non-stationary labor-augmenting technology shock, ¢ symbolizes the inverse of in-
tertemporal elasticity of substitution, 6 stands for labor supply elasticity, and ¢ is the

preference parameter that governs the disutility from participating in labor force.

The households are either employed, searching for work, or not in the labor force.
Each period, a portion (S¢) of the households search for a job and get matched with a
probability, p;. The labor force participation (F;) is defined as the sum of currently em-

ployed households (N;) and the portion of searching households who fail to get matched
(1= pt)Sp) :

Ft = Nt + (1 — pf) St. (EZ)

In each period, previous matches dissolve with an exogenous probability A so that the

law of motion of employment follows:

Nt = (1 = A)Ni_1 + piSt- (E.3)
We assume that households own the capital stock (K;) which evolves according to:

Kipr = (1= 0(us))Ke + I, (E4)

where [; is investment and u; represents the level of utilization. The depreciation of

capital depends on capital utilization in a quadratic form:

¢

(S(l/lt) = 5() + 471(1/11} - 1) + 7(1/[1} - 1)2. (E5)
The households’ budget constraint is given by:
Ct + It + 1t = RyusKy + WeNi + (1 — py) SixWi + Dy, (E.6)
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where R; is the rental rate of capital, u;K; indicates the capital services, and D; represents
the lump-sum tax received from firms. The households also pay a lump-sum tax (7;) and
receive unemployment benefits (xW;). The households” problem can be summarized as:

(Cr — px )7

o0
max  Ep Z pt
Celt,Kiy1,SuNe (= 1

— s.t. (E.2), (E.3), (E4), (E.5)and (E.6).

Firms produce output with a production form of:

F (Ki, XiNp) = (uiKe)® (XeNi)', (E.7)
where technology, X;, is assumed as an I(1) process. We assume that technology growth,
defined as v, = X;/X;_1, follows an AR(1) process in the form of:

log(7xt/Vx) = px10g (VYai—1/7x) + Expns (E.8)

where ¢, ;_;, denotes the technology news received at period t — I but realized at time
t. We follow Chahrour et al. (2023) and choose the time horizon of the anticipated
technology shocks, I as 7. However, the results are robust when switching to other time
horizons. The labor productivity is accordingly defined as:

F (K¢, X¢Nt) / Ny = (upKy / Np)* (Xt)lflx . (E.9)

Each period, firms post vacancies, V; ,with a probability g; returning a match so that
the employed labor evolves according to:

Nt = (1= A)Ni_1 + q: Vi (E.10)

Firms incur costs for posting vacancies, which include both steady-state costs, a,, and

adjustment costs, v (%) The total cost is scaled by X; to induce stationarity of the

(an v (%)) X, V4, (E.11)
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To summarize, firms maximize the present value of their profits (output less its payments

to workers, capital, and for the posting of vacancies) by solving:

. 00 u 17/
ylim _ E EZCE Y, _ WLN, — 1, RiK — L)) x, v,
f V%?I((t OE)‘B Uc t t Nt — up e Ky ay +v Vi, tVt

s.t. (E7) (E.10) and (E.12), (E.13)

where th i Jenotes the value of the firm. Stock prices, SP;, depend on both the value

of the firm and leverage represented by ¢,, in the form of:

ASP; = <Ath "””)%’. (E.14)
To preserve balanced growth, we assume that government spending grows at a
speed of vy ;1 so that
Gt = Gt-1Yxt-1- (E.15)
The government runs a balanced budget and uses lump-sum taxes to finance its spend-
ing and unemployment benefit transfers:
=G+ (1 — Pt) SiKy. (E.16)

To describe the matching process, we assume a Cobb-Douglas matching function:

M; = xVESt, (E.17)

where ¢ stipulates the matching function elasticity while M; = p;S; = 4:V; denotes
matches between searching households and hiring firms.

To complete the model description, we again follow Chahrour et al. (2023) and
assume an “agnostic” real wage, which postulates that real wage growth follows an
MA(H) process. The MA process is augmented with an error-correction term so that

wages are cointegrated with technology:
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Alog(Wy) = y(L)el¥ — @y (Iog(W;_1) — log(X;_1)). (E.18)

E.2 Stationary Representation

We can solve the optimization problems and derive the stationary equilibrium equa-

tions. Denoting detrended variables according to A; = 2t for A; € {Y;, C;, Dy, Wy, Ky, I, N
& & X1 Pt

and Uc; = %, and Up; = % we can write the model in terms of only stationary
-1 -1
variables:
Yt = (uth)“ (’)’x,tNt)lilx (E19)
Ft = Nt + (1 — Pt) St (EZO)
Ny =(1—-A)Ny_1 + M; (E.21)
Kt—H = ’)’;,tl [(1 — 5(Mt))Kt + Tt} (E22)
- . Vi
Y =C+ L + G + (ﬂn +v (V—t)> Yt Vi (E.23)
t—1
~ c ~ = Vi
Dy =Y — WiNy — us RiKy — (an +v (V_)> Yt Vi (E.24)
t—1
1= E {1 [1—6(ur) + urs1Rea]} (E.25)
K \*
gbg\[ = (1 — IX) < ot ) Yt — Wt + (1 — )\)Et {Qt,t—l—l’)/x,tfpﬁ_l} (E26)
Va,t Nt
2
~N _ Tt Vi ) /( Vi ) Vi /(Vt+1) (Vt+1)
= Ay +v|(5— | +V | 5— | 55— —E<Q V| — )|
qr n (th Vi) Vi t 1Y x 1 v, v,
(E.27)
R a—1
R, — [x( usKy ) (E.28)
Y, tINt
u N . 1— u N
L ) [wt (1= ME {Qt,tm,t (¢> (_ﬁ _ ml) H
Uc,t Pt+1 Uc,t+1
(E.29)
Y = uReKy — (ﬂn +v (%)) Yt Vi
P = (E.30)
Nt
< swf (1% 1—wF
Wi = wolf” (Wi—1/Yx-1) (E.31)
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() = 80+ pr (e — 1)+ 2 (a — 1)2 (E32)

R =1+ ¢po(ur—1) (E.33)

Uett1

— —0
where ()11 = BVt

E.3 Parameter Calibration and Estimation

We calibrate a large set of parameters as listed in Table E.1. In particular, we calibrate
the long-run growth rate, vy, to 0.5%, which is the average labor productivity growth
over the sample. Consistent with Christiano et al. (2005) and Smets and Wouters (2007),
we calibrate the steady-state depreciation rate, Jp, to 0.025. We set the capital share, «,
and the inverse of intertemporal elasticity of substitution, ¢, respectively to 0.3 and 1.5
referring to the corresponding prior means selected in Smets and Wouters (2007). Similar
to Petrongolo and Pissarides (2001) and Gavazza et al. (2018), we pick 0.5 as the value of
the matching function elasticity, €. We set the discount factor, B, to 0.9975, which implies
that the annualized steady-state real interest rate, r = 4(1/87~% — 1), equals 4%.*

Considering that the search model largely follows Chahrour et al. (2023), we cali-
brate the following parameters to the same values as in their paper. In particular, the
disutility of participation parameter, ¢, is set to 1.088, and the steady state vacancy post-
ing cost is calibrated to 0.29 to be consistent with standard long-run empirical labor

market statistics.”

The separation rate, A, is set to 0.12 according to the estimates of
Yashiv (2007). The replacement rate of unemployment benetits, x, is calibrated to 0.2 to
match the average replacement rate from OECD (1994). The leverage factor, ¢, is set
to 1.5, which implies that the long-run debt-to-book value of public firms of 1/3. The

wage correction parameter is fixed to 0.05.

We then estimate numerous parameters that lack guidance from (or agreement in)
the literature. First, we estimate the labor supply parameter, 6, in the utility function,
with labor supply elasticity formulated by 1/(0 — 1). Second, we assume that capital

4Chahrour et al. (2023) calibrate 8 to 0.99 and <y to 1.004. They also report an estimate of ¢ to 2.058,
which actually implies an annualized steady-state real interest rate of 7.37%.

>Chahrour et al. (2023) derive these values by imposing that the unemployment rate, 1 = 0.06, and the
match probability for firms, § = 0.90, and our value for the ratio of vacancy posting costs to the marginal
product of labor, ¥° = 0.17.
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Table E.1: Calibrated Parameters

Parameter Concept Value Source
Yx Productivity growth (average) 1.005 Data
o Inv. intertemporal elasticity 1.500 Smets and Wouters (2007)
o Capital share 0.300  Smets and Wouters (2007)
do Depreciation rate (steady state) 0.025  Smets and Wouters (2007)
€ Matching function elasticity 0.500 Gavazza et al. (2018)
B Discount factor 0.9975 Moran and Queralto (2018)
A Separation rate 0.120 Chahrour et al. (2023)
P Preference parameter 1.088 Chahrour et al. (2023)
K Replacement rate 0.200 Chahrour et al. (2023)
ay Vacancy posting cost (steady state) 0.290 Chahrour et al. (2023)
Prev Leverage factor 1.500 Chahrour et al. (2023)
Px Wage error-correction 0.050 Chahrour et al. (2023)

Notes: The table displays the parameter values used for calibration in the labor search and matching
model.

depreciation depends on the utilization rate in a quadratic form and estimate the curva-
ture parameter of the depreciation function, ¢,. A sizable ¢, recommends a low degree
of capital utilization variations. Third, we postulate that firms face a quadratic vacancy
adjustment cost and estimate the curvature of the function denoted by ¢. Fourth, we
consider a non-stationary technology with its growth rate following a simple AR(1) pro-
cess driven by anticipated technology shocks. We estimate the persistence of the process,
px, and the standard deviations of anticipated technology shocks, 0:.® Finally, we fol-
low Chahrour et al. (2023) and assume an “agnostic” real wage, which stipulates that
real wage growth follows a moving average process with 40 lags. We estimate moving

average parameters Yo, Y1, . - . Y40

We infer the vector of model parameters, ©® = {6, ¢2, &, px, 0x, Y0, Y1, - - - Y40}, by min-
imizing the distance between model-implied responses following anticipated technology
shocks, (), and their SVAR counterparts, Pyag, for horizons of up to 50 periods. For-
mally,

A

O = arggminwm — 9(0))W(¢var — ¥(9)), (E.34)

where W is a diagonal matrix comprised of the inverse of the posterior variance of the

®In the benchmark, we postulate that anticipated technology shocks will be realized seven quarters
after observing the shock. However, the results are robust when switching to other anticipation horizons.
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SVAR impulse responses. Column “Benchmark” of Table E.2 reports parameter esti-
mates. The preference parameter, 0, is estimated to be 3.101, which corresponds to an
elasticity of labor supply around 1/(0 — 1) = 0.48. This is close to the estimates of the
Frisch elasticity using micro data which cluster around 0.4 (Reichling and Whalen 2012).
The estimated curvature parameter of the quadratic capital utilization function is 2.5,
informing a moderate degree of utilization variation. The vacancy posting cost, ¢, is
analogous to Chahrour et al. (2023) at 0.727. Technology growth is exceptionally persis-
tent (o, = 0.981) with small anticipated technology shocks (¢, = 0.018), intimating that
the half-life of the technology response starting from the maximum is around 41 quar-
ters.” To conserve space, we refrain from reporting the numerical values of the moving
average parameters associated with wage process and instead present their implications
for wage responses in Figure E.1. In line with Chahrour et al. (2023), wage diminishes
instantly following expansionary anticipated technology shocks but eventually elevates

above its initial level when shocks are materialized.

Table E.2: Estimated Parameter Values

Parameter Concept Benchmark  BS CcCP
0 Labor supply parameter 3.101 1.113  0.569
¢ Factor utilization 2.500 100000 0.241
¢ Vac. posting cost 0.727 0.028 1.100
Px Technology growth (persistence) 0.981 0.935 0.939
og Technology growth (std. dev.) 0.018 0.030 0.055

Notes: The table displays the estimated parameter values by matching the impulse responses implied by
the search and matching model with SVAR responses identified with different methods. Columns 3 to 5
correspond to the results when shocks are respectively identified with our benchmark procedure, Barsky
and Sims (2011) method, and Chahrour et al. (2023) approach.

E.4 Impulse Responses

Figure E.2 collates SVAR impulse responses (in blue lines) with the ones created by
the search and matching model (in black dashed lines). The theoretical model provides

"The presence of persistent technology growth implies that the real interest rate incorporates a per-
sistent component driven by households’ intertemporal consumption decisions. This finding aligns with
the assumption made in the empirical literature that estimates the natural rate of interest, as proposed by
Laubach and Williams (2003), and further explored by Wynne and Zhang (2018a) and Wynne and Zhang
(2018b).
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strikingly excellent accounts of the empirical responses to anticipated technology shocks.
In particular, labor productivity responses resemble a sleeping J curve, which diminishes
at short horizons but gets enhanced after the shocks start upgrading technology. Like
empirical responses, macroeconomic variables respond in a hump-shaped pattern. The
theoretical model manages to replicate the comovement among all macroeconomic indi-
cators despite that the theoretical investment responses falling short of their empirical
counterparts at short horizons. Finally, the model exactly matches the immediate over-
shooting and subsequent trajectories of stock prices.

Before finishing this section, we delve into how far we can go in matching the dy-
namics following the anticipated shocks identified with max-share approaches of Barsky
and Sims (2011) and Chahrour et al. (2023). It deserves clarification that the target of this
exercise is not to justify our SVAR identification. Instead, we aim to utilize the search and
matching model to show that max-share approaches may deliver contrasting theoretical
implications from our benchmark results in spite of their qualitatively similar effects.
Columns “BS” and "CCP” record the parameter estimates when the targeted SVAR re-
sponses in equation (E.34) are established with Barsky and Sims (2011) and Chahrour
et al. (2023) methods respectively. To match Barsky and Sims (2011) responses, the es-
timated labor supply parameter, 6, equals 1.113, which bears witness to a high labor
supply elasticity of around 9. The capital depreciation parameter, ¢,, signifies no capi-
tal utilization variation as it is estimated to be a tremendously high number reaching its
designated upper limit. To fit Chahrour et al. (2023) responses, the estimated 6 turns into
0.569, suggesting an abnormally negative labor supply elasticity. The factor utilization
parameter is smaller than the benchmark stipulating a larger factor utilization variation.

In addition, both max-share approaches favor less persistent technology growth.

Figure E.3 shows that the empirical dynamics are largely matched with two ex-
ceptions. First, both max-share methods create more substantial short-run investment
responses than prescribed by the theoretical model. Second, diverging from the theoret-
ical responses, the Chahrour et al. (2023) anticipated technology shocks enhance labor
productivity at short horizons. To sum up, the max-share approaches twist the theory

distinctly from our method based on narrative information.
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Figure E.1: Wage Responses
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Notes: The Figure presents the estimated wage responses to anticipated technology shocks.
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Figure E.2: Impulse Response Matching for Anticipated Technology Shocks

Notes: The blue solid lines and the shaded areas represent, respectively, the median and the 68% (point-
wise) credible bands for impulse responses when technology shocks are identified with both IVs and
narrative sign restrictions. The black dashed lines depict the effects of anticipated technology shocks
implied by the labor search and matching model.
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