You're currently viewing an old version of this dataset. To see the current version, click here.

efficient estimation of factor models with time and cross-sectional dependence (replication data)

This paper studies the efficient estimation of large-dimensional factor models with both time and cross-sectional dependence assuming (N,T) separability of the covariance matrix. The asymptotic distribution of the estimator of the factor and factor-loading space under factor stationarity is derived and compared to that of the principal component (PC) estimator. The paper also considers the case when factors exhibit a unit root. We provide feasible estimators and show in a simulation study that they are more efficient than the PC estimator in finite samples. In application, the estimation procedure is employed to estimate the Lee-Carter model and life expectancy is forecast. The Dutch gender gap is explored and the relationship between life expectancy and the level of economic development is examined in a cross-country comparison.

Data and Resources

This dataset has no data

Suggested Citation

Heinemann, Alexander (2017): Efficient estimation of factor models with time and cross-sectional dependence (replication data). Version: 1. Journal of Applied Econometrics. Dataset. https://journaldata.zbw.eu/dataset/efficient-estimation-of-factor-models-with-time-and-crosssectional-dependence?activity_id=3a5a2573-fb2d-4eba-817e-2339c4f8ca86