Julieta Fuentes
;
Pilar Poncela
;
Julio Rodríguez

sparse partial least squares in time series for macroeconomic forecasting (replication data)

Factor models have been applied extensively for forecasting when high-dimensional datasets are available. In this case, the number of variables can be very large. For instance, usual dynamic factor models in central banks handle over 100 variables. However, there is a growing body of literature indicating that more variables do not necessarily lead to estimated factors with lower uncertainty or better forecasting results. This paper investigates the usefulness of partial least squares techniques that take into account the variable to be forecast when reducing the dimension of the problem from a large number of variables to a smaller number of factors. We propose different approaches of dynamic sparse partial least squares as a means of improving forecast efficiency by simultaneously taking into account the variable forecast while forming an informative subset of predictors, instead of using all the available ones to extract the factors. We use the well-known Stock and Watson database to check the forecasting performance of our approach. The proposed dynamic sparse models show good performance in improving efficiency compared to widely used factor methods in macroeconomic forecasting.

Data and Resources

Suggested Citation

Fuentes, Julieta; Poncela, Pilar; Rodríguez, Julio (2015): Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting (replication data). Version: 1. Journal of Applied Econometrics. Dataset. http://dx.doi.org/10.15456/jae.2022321.0721933681