Andrea Carriero
;
George Kapetanios
;
Massimiliano Marcellino

forecasting large datasets with bayesian reduced rank multivariate models (replication data)

The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large-scale Bayesian VARs, and multivariate boosting. Specifically, we focus on classical reduced rank regression, a two-step procedure that applies, in turn, shrinkage and reduced rank restrictions, and the reduced rank Bayesian VAR of Geweke (1996). We find that using shrinkage and rank reduction in combination rather than separately improves substantially the accuracy of forecasts, both when the whole set of variables is to be forecast and for key variables such as industrial production growth, inflation, and the federal funds rate. The robustness of this finding is confirmed by a Monte Carlo experiment based on bootstrapped data. We also provide a consistency result for the reduced rank regression valid when the dimension of the system tends to infinity, which opens the way to using large-scale reduced rank models for empirical analysis.

Data and Resources

Suggested Citation

Carriero, Andrea; Kapetanios, George; Marcellino, Massimiliano (2011): Forecasting large datasets with Bayesian reduced rank multivariate models (replication data). Version: 1. Journal of Applied Econometrics. Dataset. http://dx.doi.org/10.15456/jae.2022320.0722974462